智慧农业科技创新引领农业新质生产力发展路径
(曹冰雪、李鸿飞并列第一作者)
曹冰雪,研究方向为农业农村信息化理论与微观应用研究。E-mail:caobx@nercita.org.cn; |
李鸿飞,研究方向为农业农村信息化政策研究。E-mail:lihf@nercita.org.cn |
收稿日期: 2024-05-09
网络出版日期: 2024-06-12
基金资助
国家自然科学基金专项项目(L2224049)
北京市乡村振兴专家咨询委员会2024年委托课题(202404-Ⅰ)
北京市农林科学院创新能力:乡村振兴研究中心(KJCX20240404)
北京市农林科学院创新能力建设专项(KJCX20240309)
北京市农林科学院青年基金项目(QNJJ202322)
The Path of Smart Agricultural Technology Innovation Leading Development of Agricultural New Quality Productivity
CAO Bingxue, E-mail: caobx@nercita.org.cn |
LI Hongfei, E-mail: lihf@nercita.org.cn |
Received date: 2024-05-09
Online published: 2024-06-12
Supported by
National Natural Science Foundation of China(L2224049)
Commission Project of Beijing Rural Revitalization Expert Advisory Committee in 2024
Innovation Capability of Beijing Academy of Agriculture and Forestry Sciences: Rural Revitalization Research Center(KJCX20240404)
Innovation Capability Construction Project of Beijing Academy of Agriculture and Forestry Sciences(KJCX20240309)
Youth Fund Project of Beijing Academy of Agriculture and Forestry Sciences(QNJJ202322)
Copyright
[目的/意义] 智慧农业科技是农业领域又一次新技术革命,具备农业新质生产力“高科技、高效能、高质量、可持续”的内在特征,已成为推进农业新质生产力发展的重要内核与引擎。[进展]本文对智慧农业科技创新的现实基础、内在逻辑与问题挑战开展系统研究,结论表明中国“表型+基因型+环境型”智能育种已迈入快车道,农业天、空、地信息感知技术体系逐渐成熟,农业大数据与智能决策技术研究探索不断推进,面向不同领域的智能农机装备创制取得丰硕成果。智慧农业科技创新通过赋能农业要素、技术、场景、主体与价值,推动农业新质生产力发展。但也面临科技创新政策体系不健全、关键技术存在卡点堵点断点、科创成果转化落地难度较大、支撑体系不够完备等重大挑战。[结论/展望]聚焦问题导向,提出了中国智慧农业科技创新平台、技术、场景、人才的“四高”路径,并围绕顶层设计、政策供给、先行实践、生态体系等层面,提出智慧农业科技创新引领农业新质生产力发展的对策建议。
曹冰雪 , 李鸿飞 , 赵春江 , 李瑾 . 智慧农业科技创新引领农业新质生产力发展路径[J]. 智慧农业, 2024 , 6(4) : 116 -127 . DOI: 10.12133/j.smartag.SA202405004
[Significance] Building the agricultural new quality productivity is of great significance. It is the advanced quality productivity which realizes the transformation, upgrading, and deep integration of substantive, penetrating, operational, and media factors, and has outstanding characteristics such as intelligence, greenness, integration, and organization. As a new technology revolution in the field of agriculture, smart agricultural technology transforms agricultural production mode by integrating agricultural biotechnology, agricultural information technology, and smart agricultural machinery and equipment, with information and knowledge as important core elements. The inherent characteristics of "high-tech, high-efficiency, high-quality, and sustainable" in agricultural new quality productivity are fully reflected in the practice of smart agricultural technology innovation. And it has become an important core and engine for promoting the agricultural new quality productivity. [Progress] Through literature review and theoretical analysis, this article conducts a systematic study on the practical foundation, internal logic, and problem challenges of smart agricultural technology innovation leading the development of agricultural new quality productivity. The conclusions show that: (1) At present, the global innovation capability of smart agriculture technology is constantly enhancing, and significant technology breakthroughs have been made in fields such as smart breeding, agricultural information perception, agricultural big data and artificial intelligence, smart agricultural machinery and equipment, providing practical foundation support for leading the development of agricultural new quality productivity. Among them, the smart breeding of 'Phenotype+Genotype+Environmental type' has entered the fast lane, the technology system for sensing agricultural sky, air, and land information is gradually maturing, the research and exploration on agricultural big data and intelligent decision-making technology continue to advance, and the creation of smart agricultural machinery and equipment for different fields has achieved fruitful results; (2) Smart agricultural technology innovation provides basic resources for the development of agricultural new quality productivity through empowering agricultural factor innovation, provides sustainable driving force for the development of agricultural new quality productivity through empowering agricultural technology innovation, provides practical paradigms for the development of agricultural new quality productivity through empowering agricultural scenario innovation, provides intellectual support for the development of agricultural new quality productivity through empowering agricultural entity innovation, and provides important guidelines for the development of agricultural new quality productivity through empowering agricultural value innovation; (3) Compared to the development requirements of agricultural new quality productivity in China and the advanced level of international smart agriculture technology, China's smart agriculture technology innovation is generally in the initial stage of multi-point breakthroughs, system integration, and commercial application. It still faces major challenges such as an incomplete policy system for technology innovation, key technologies with bottlenecks, blockages and breakpoints, difficulties in the transformation and implementation of technology achievements, and incomplete support systems for technology innovation. [Conclusions and Prospects] Regarding the issue of technology innovation in smart agriculture, this article proposes the 'Four Highs' path of smart agriculture technology innovation to fill the gaps in smart agriculture technology innovation and accelerate the formation of agricultural new quality productivity in China. The "Four Highs" path specifically includes the construction of high-energy smart agricultural technology innovation platforms, the breakthroughs in high-precision and cutting-edge smart agricultural technology products, the creation of high-level smart agricultural application scenarios, and the cultivation of high-level smart agricultural innovation talents. Finally, this article proposes four strategic suggestions such as deepening the understanding of smart agriculture technology innovation and agricultural new quality productivity, optimizing the supply of smart agriculture technology innovation policies, building a national smart agriculture innovation development pilot zone, and improving the smart agriculture technology innovation ecosystem.
本研究不存在研究者以及与公开研究成果有关的利益冲突。
1 |
习近平主持召开新时代推动东北全面振兴座谈会强调 牢牢把握东北的重要使命 奋力谱写东北全面振兴新篇章[N]. 人民日报, 2023-09-10.
|
2 |
周文, 许凌云. 论新质生产力:内涵特征与重要着力点[J]. 改革, 2023(10): 1-13.
|
3 |
洪银兴. 新质生产力及其培育和发展[J]. 经济学动态, 2024(1): 3-11.
|
4 |
林万龙, 朱菲菲.以新质生产力为引领,推动农业强国建设[EB/OL]. 光明网, [2024-02-17].
|
5 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019(1): 1-7.
|
6 |
张颖, 廖生进, 王璟璐, 等. 信息技术与智能装备助力智能设计育种[J]. 吉林农业大学学报, 2021, 43(2): 119-129.
|
7 |
范贝贝, 李瑾, 冯献. 农业强国目标下作物育种科技与装备创新:态势、挑战与路径[J]. 科技导报, 2023, 41(16): 23-31.
|
8 |
|
9 |
|
10 |
|
11 |
华智 育种管理专家[EB/OL]. [2024-4-20].
|
12 |
吴炳方, 张淼, 曾红伟, 等. 全球农情遥感速报系统20年[J]. 遥感学报, 2019, 23(6): 1053-1063.
|
13 |
房世波, 韩威, 裴志方. 沙漠蝗群对印巴边境植被的影响及其未来可能发展趋势[J]. 遥感学报, 2020, 24(3): 326-332.
|
14 |
姚志凤, 雷雨, 何东健. 基于高光谱成像的小麦白粉病与条锈病识别(英文)[J]. 光谱学与光谱分析, 2019, 39(3): 969-976.
|
15 |
|
16 |
|
17 |
赵静, 李志铭, 鲁力群, 等. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555.
|
18 |
|
19 |
陈诚, 徐瑞斌. 智慧农业创新赋能新质生产力[N]. 北京日报, 2024-3-22.
|
20 |
姜侯, 杨雅萍, 孙九林. 农业大数据研究与应用[J]. 农业大数据学报, 2019, 1(1): 5-15.
|
21 |
杨锋, 吴华瑞, 朱华吉, 等. 基于Hadoop的海量农业数据资源管理平台[J]. 计算机工程, 2011, 37(12): 242-244.
|
22 |
郭二秀. 基于Spark的农业大数据挖掘系统的设计与实现[D]. 杭州: 浙江大学, 2018.
|
23 |
陈志浩, 王建华, 龙拥兵, 等. 基于Spark的WOA-BP水稻产量预测[J]. 华南农业大学学报, 2023, 44(4): 613-618.
|
24 |
|
25 |
|
26 |
|
27 |
田桂林, 苏枫, 邹红, 等. 基于天牛群优化算法的灌区渠系配水研究[J]. 灌溉排水学报, 2022, 41(7): 96-103.
|
28 |
韩佳伟, 朱文颖, 张博, 等. 装备与信息协同促进现代智慧农业发展研究[J]. 中国工程科学, 2022, 24(1): 55-63.
|
29 |
爱科农[EB/OL]. [2024-4-20].
|
30 |
赵春江, 李瑾, 冯献, 等. 关于我国智能农机装备发展的几点思考[J]. 农业经济问题, 2023, 44(10): 4-12.
|
31 |
孟志军, 王昊, 付卫强, 等. 农业装备自动驾驶技术研究现状与展望[J]. 农业机械学报, 2023, 54(10): 1-24.
|
32 |
中央网信办信息化发展局,农业农村部市场与信息化司. 中国数字乡村发展报告(2022年)[R/OL]. (2023-03-01)[2024-04-20].
|
33 |
赵春江, 郭文忠. 中国水肥一体化装备的分类及发展方向[J]. 农业工程技术, 2017, 37(7): 10-15.
|
34 |
中国农业大学工学院. 学史明理开新局|工学院智能农业装备研究团队获得第一届中国农业机器人创新大赛一等奖[EB/OL]. (2021-05-26)[2024-04-20].
|
35 |
斯维垦智能科技[EB/OL]. [2024-04-20].
|
36 |
afimilk[EB/OL]. [2024-04-20].
|
37 |
中国畜牧业协会智能畜牧分会. 中国智能畜牧发展现状与趋势白皮书(2019)[R/OL]. [2024-04-20].
|
38 |
闫国琦, 倪小辉, 莫嘉嗣. 深远海养殖装备技术研究现状与发展趋势[J]. 大连海洋大学学报, 2018, 33(1): 123-129.
|
39 |
中国水产科学院研究院渔业机械仪器研究所. 工业化养殖装备[EB/OL]. [2024-04-20].
|
40 |
浙江大学[EB/OL]. [2024-04-20].
|
41 |
钱加荣, 毛世平, 林青宁. 强化农业科技创新布局,走好农业强国之路[EB/OL].光明网, [2022-11-21].
|
42 |
国家统计局, 科学技术部, 财政部. 2022年全国科技经费投入统计公报[R/OL]. (2023-09-18)[2024-04-20].
|
43 |
杜焱强, 钟钰. 依靠数字技术,建设和美乡村[EB/OL]. 21世纪经济网, [2023-03-24].
|
44 |
高旺盛. 农业科技创新体制机制存在问题分析与建议[EB/OL]. 国科农研院, [2023-03-30].
|
45 |
王建冬, 于施洋, 黄倩倩. 数据要素基础理论与制度体系总体设计探究[J]. 电子政务, 2022(2): 2-11.
|
46 |
燕艳华, 王亚华, 云振宇, 等. 新时期我国农业标准化发展研究[J]. 中国工程科学, 2023, 25(4): 202-213.
|
/
〈 | 〉 |