[目的/意义] 准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节。传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应。因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要。 [方法] 选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2, DCNv2),同时添加洗牌注意力机制(Shuffle Attention, SA)模块和优化损失函数(SCYLLA-IoU Loss, SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测。其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换。利用直通滤波、随机抽样一致性(Random Sample Consensus, RANSAC)、统计离群值滤波、主成分分析法(Principal Component Analysis, PCA)完成点云处理与分析。最终根据关键点坐标自动计算体高、体斜长、臀高、胸围和臀围5项体尺参数。 [结果和讨论] DSS-YOLO的平均关键点检测精度为92.5%;dDSS为7.2个像素;参数量和运算量分别仅为3.48 M和9.1 G。体尺参数自动测量结果与人工测量值相比,各项体尺参数的整体平均绝对误差为3.77 cm;平均相对误差为2.29%。 [结论] 研究结果可为蒙古马运动性能相关遗传参数的确定提供技术支撑。