1 | Yang G, Liu J, Zhao C, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives[J]. Front Plant Sci, 2017, 8: 1111. | 2 | 陈仲新, 郝鹏宇, 刘佳, 等. 农业遥感卫星发展现状及我国监测需求分析[J]. 智慧农业, 2019,1(1): 32-42. | 2 | Chen Z, Hao P, Liu J, et al. Technical demands for agricultural remote sensing satellites in China[J]. Smart Agriculture, 2019, 1(1): 32-42. | 3 | Li Z, Li Z, Fairbairn D, et al. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral[J]. Computers and Electronics in Agriculture, 2019, 162: 174-182. | 4 | Xu Y, Zhang L, Du B, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, (99): 1-17. | 5 | Sun W, Du Q. Hyperspectral band selection: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2): 118-139. | 6 | Fu Y, hao C, Wang J, et al. An improved combination of spectral and spatial features for vegetation classification in hyperspectral images[J]. Remote Sensing, 2017, 9(3): no. 261. | 7 | 付元元. 基于遥感数据的作物长势参数反演及作物管理分区研究[D]. 杭州: 浙江大学, 2015. | 7 | Fu Y. Remote sensing data based crop growth parameters retrieval and crop management zone delineation research [D]. Hangzhou: Zhejiang University, 2015. | 8 | 夏道平, 付元元, 王纪华, 等. 分散矩阵特征选择方法改进及在高光谱影像植被分类中的应用[J]. 农业工程学报, 2016, 32(21): 196-201. | 8 | Xia D, Fu Y, Wang J, et al. An improved scatter-matrix-based feature selection method for vegetation classification of hyperspectral image[J]. Transactions of the CSAE, 2016, 32(21): 196-201. | 9 | Cgerutadat A, Bruce L M. Why hyperspectral component analysis is not an appropriate feature extraction method for hyperspectral data[J]. IEEE International Geoscience and Remote Sensing Symposium, 2003, 6: 3420-3422. | 10 | Uddin M P, Mamun M A, Hossain M A. Effective feature extraction through segmentation-based folded-PCA for hyperspectral image classification[J]. International Journal of Remote Sensing, 2019, 40: 1-31. | 11 | Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. Studies in Media and Communication, 1973, SMC-3(6): 610-621. | 12 | Jia S, Deng X, Zhu J, et al. Collaborative representation-based multiscale superpixel fusion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7770-7784. | 13 | Benediktsson J A, Palmason J A, Seveinsson J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(3): 480-491. | 14 | 王增茂, 杜博, 张良培, 等. 基于纹理特征和形态特征融合的高光谱影像分类法[J]. 光子学报, 2014, 43(8):122-129. | 14 | Wang Z, Du B, Zhang L, et al. Based on texture feature and extend morphological profile fusion for hyperspectral image classification[J]. Acta Photonica Sinca, 2014, 43(8): 122-129. | 15 | Jia S, Wu K, Zhu J, et al. Spectral-spatial Gabor surface feature fusion approach for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2): 1142-1154. | 16 | Lv F, Han M. Hyperspectral image classification based on multiple reduced kernel extreme learning machine[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 3397-3405. | 17 | Xue Z. A general generative adversarial capsule network for hyperspectral image spectral-spatial classification[J]. Remote Sensing Letters, 2020, 11(1): 19-28. | 18 | Huang H, Duan Y, He H, et al. Spatial-spectral local discriminant projection for dimensionality reduction of hyperspectral image[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156: 77-93. | 19 | Li J, Huang X, Gamba P, et al. Multiple feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1592-606. | 20 | Chang C, Lin C. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3): 27. | 21 | Peng H, Long F, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238. | 22 | Brown G, Pocock A, Zhao M J, et al. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13: 27-66. | 23 | Meyer P E, Schretter C, Bontempi G. Information-theoretic feature selection in microarray data using variable complementarity[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(3): 261-274. | 24 | Sun K, Geng X, Ji L. A new sparsity-based band selection method for target detection of hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 329-333. | 25 | Wang J, Chang C. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1586-1600. | 26 | Du Q. Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification[J]. Pattern Recognition, 2007, 40: 1510-1519. | 27 | Zhou L, Wang L, Shen C. Feature selection with redundancy-constrained class separability[J]. IEEE Transactions on Neural Networks. 2010, 21(5): 853-858. | 28 | Huang X, Liu X, Zhang L. A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation[J]. Remote Sensing, 2014, 6(9): 8424-8445. | 29 | Jiang L, Narayanan R M. Integrated spectral and spatial information mining in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 673-685. | 30 | Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842. | 31 | Zhang L, Zhang L, Tao D, et al. A multifeature tensor for remote-sensing target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2): 374-378. |
|