1 | Godfray H C, Beddington J R, Crute I R, et al. Food security: The challenge of feeding 9 billion people[J]. Science, 2010, 327(5967): 812-818. | 2 | Liu B, Asseng S, Müller C, et al. Similar estimates of temperature impacts on global wheat yield by three independent methods[J]. Nature Climate Change, 2016, 6(12): 1130-1136. | 3 | Araus J L, Cairns J E. Field high-throughput phenotyping: the new crop breeding frontier[J]. Trends in Plant Science, 2014, 19(1): 52-61. | 4 | Furbank R T, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck[J]. Trends in Plant Science, 2011, 16(12): 635-644. | 5 | Chapman S C, Zheng B, Potgieter A, et al. Visible, infrarednear, and thermal spectral radiance on-board UAVs for high-throughput phenotyping of plant breeding trials[M]. Thenkabail P S, Lyon J G, Huete A. Biophysical and biochemical characterization and plant species studies. CRC Press, 2018: 275-298. | 6 | Martre P, Quilot-Turion B, Luquet B, et al. Model-assisted phenotyping and ideotype design[M]. Victor O S, Calderini D F. Crop Physiology. Academic Press, 2015: 349-373. | 7 | Tardieu F, Cabrera-Bosquet L, Pridmore T, et al. Plant phenomics, from sensors to knowledge[J]. Current Biology, 2017, 27(15): 770-783. | 8 | Monteith J L. Climate and the efficiency of crop production in Britain[J]. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 1977, 281(980): 277-294. | 9 | Monteith J L. Validity of the correlation between intercepted radiation and biomass[J]. Agricultural and Forest Meteorology, 1994, 68(3-4): 213-220. | 10 | Parry M A, Reynolds M, Salvucci M E, et al. Raising yield potential of wheat II. increasing photosynthetic capacity and efficiency[J]. Journal of Experimental Botany, 2010, 62(2): 453-467. | 11 | Furbank R T, Jimenez-Berni J A, George-Jaeggli B, et al. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops[J]. New Phytologist, 2019, 223(4): 1714-1727. | 12 | Su Y, Wu F, Zurui A, et al. Evaluating maize phenotype dynamics under drought stress using terrestrial lidar[J]. Plant Methods, 2019, 15(1): 11-26. | 13 | Cabrera-Bosquet L, Fournier C, Brichet N, et al. High throughput estimation of incident light, light interception and radiation use efficiency of thousands of plants in a phenotyping platform[J]. New Phytologist, 2016, 212(1): 269-281. | 14 | Weiss M, Baret F. fAPAR (fraction of Absorbed Photosynthetically Active Radiation) estimates at various scale[C]// 34th International Symposium on Remote Sensing of Environment, 2011. | 15 | Baret F, Madec S, Irfan K, et al. Leaf-rolling in maize crops: From leaf scoring to canopy-level measurements for phenotyping[J]. Journal of Experimental Botany, 2018, 69(10): 2705-2716. | 16 | Liu S, Baret F, Abichou M, et al. Estimating wheat green area index from ground-based LiDAR measurement using a 3D canopy structure model[J]. Agricultural and Forest Meteorology, 2017, 247: 12-20. | 17 | Jimenez-Berni J A, Deery D M, PabloRozas-Larraondo, et al. High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR[J]. Frontiers in Plant Science, 2018, 9: no. 237. | 18 | Jin S, Su Y, Gao S, et al. Deep learning: Individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms[J]. Frontiers in Plant Science, 2018, 9: no. 866. | 19 | Jin S, Su Y, Wu F, et al. Stem-leaf segmentation and phenotypic trait extraction of individual maize using terrestrial LiDAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(3): 1336-1346. | 20 | Lin Y. LiDAR: An important tool for next-generation phenotyping technology of high potential for plant phenomics?[J]. Computers and Electronics in Agriculture, 2015, 119: 61-73. | 21 | Campbell G S, Norman J M. An Introduction to Environmental Biophysics[M]. New York: Springer, 1998. | 22 | Zhao K, García M, Liu S, et al. Terrestrial lidar remote sensing of forests: Maximum likelihood estimates of canopy profile, leaf area index, and leaf angle distribution[J]. Agricultural and Forest Meteorology, 2015, 209-210: 100-113. | 23 | Liu S, Martre P, Buis S, et al. Estimation of plant and canopy architectural traits using the D3P Digital Plant Phenotyping Platform[J]. Plant Physiology, 2019, 181(3): 881-890. | 24 | Godin C, Sinoquet H. Functional-structural plant modelling[J]. New phytologist, 2005, 166(3): 705-708. | 25 | Vos J, Evers B, Buck-Sorlin H, et al. Functional-structural plant modelling: A new versatile tool in crop science[J]. Journal of Experimental Botany, 2010, 61(8): 2101-2115. | 26 | Pradal C, Dufour-Kowalski S, Boudon F, et al. OpenAlea: A visual programming and component-based software platform for plant modelling[J]. Functional Plant Biology, 2008, 35(10): 751-760. | 27 | Fournier C, Andrieu B, Ljutovac S, et al. ADEL-Wheat: A 3D architectural model of wheat development[C]// International Symposium on Plant Growth Modeling, Simulation, Visualization and their Applications (PMA03). 2003: 54-63. | 28 | Chelle M, Andrieu B. The nested radiosity model for the distribution of light within plant canopies[J]. Ecological Modelling, 1998, 111(1): 75-91. | 29 | Andrieu B, Baret F. Indirect methods of estimating crop structure from optical measurements, crop structure and light microclimate[M]. Crop Structure and Light Microclimate: Characterization and Application. Paris: INRA, 1993: 285-322. | 30 | Chen J M, Black T Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4): 421-429. | 31 | Lang A R G. Application of some of Cauchy's theorems to estimation of surface areas of leaves, needles and branches of plants, and light transmittance[J]. Agricultural and Forest Meteorology, 1991, 55(3): 191-212. | 32 | Baret F, Buis S. Estimating canopy characteristics from remote sensing observations: Review of methods and associated problems[M]. Liang S. Advances in Land Remote Sensing. Dordrecht: Springer, 2008: 173-201. | 33 | Zhao K, Popescu S, Meng X, et al. Characterizing forest canopy structure with lidar composite metrics and machine learning[J]. Remote Sensing of Environment, 2011, 115(8): 1978-1996. | 34 | Abichou M, de Solan B, Andrieu B. Architectural Response of wheat cultivars to row spacing reveals altered perception of plant density[J]. Frontiers in Plant Science, 2019, 10: 999. | 35 | Baret F, Hagolle O, Geiger B, et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm[J]. Remote Sensing of Environment, 2007, 110(3): 275-286. | 36 | Bacour C, Baret F, Béal D, et al. Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data: Principles and validation[J]. Remote Sensing of Environment, 2006, 105(4): 313-325. | 37 | Martre P, Dambreville A. A model of leaf coordination to scale-up leaf expansion from the organ to the canopy[J]. Plant Physiology, 2018, 176(1): 704-716. | 38 | Liu S, Baret F, Andrieu B, et al. Modeling the spatial distribution of plants on the row for wheat crops: Consequences on the green fraction at the canopy level[J]. Computers and Electronics in Agriculture, 2017, 136: 147-156. | 39 | Sinclair R, Hone T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review[J]. Crop Science, 1989, 29: 90-98. | 40 | Baret F, de Solan B, Lopez-Lozano R, et al. GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops[J]. Agricultural and Forest Meteorology, 2010, 150(11): 1393-1401. | 41 | Hartmann A, Czauderna T, Hoffmann R, et al. HTPheno: An image analysis pipeline for high-throughput plant phenotyping[J]. BMC bioinformatics, 2011, 12(1): 148. | 42 | Donald C M. The breeding of crop ideotypes[J]. Euphytica, 1967, 17(3): 385-403. | 43 | Jin X, Madec S, Dutartre D, et al. High-throughput measurements of stem characteristics to estimate ear density and above-ground biomass[J]. Plant Phenomics, 2019: no. 4820305. | 44 | Madec S, Jin X, Lu H, et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology, 2019, 264: 225-234. | 45 | Pound M P, Atkinson J A, Townsend A J, et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping[J]. Gigascience, 2017, 6(10): 1-10. | 46 | Taghavi Namin S, Esmaeilzadeh M, Najafi M, et al. Deep phenotyping: Deep learning for temporal phenotype/genotype classification[J]. Plant Methods, 2018, 14(1): no. 66. | 47 | Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// International Conference on Neural Information Processing Systems, 2014: 2672-2680. | 48 | Qi C, Yi L, Su H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[M]. Bach F R, Jordan M. Advances in neural information processing systems, 2017: 5099-5108. | 49 | Jin S, Su Y, Gao S, et al. Separating the structural components of maize for field phenotyping using terrestrial lidar data and deep convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2644-2658. | 50 | Han J, Jentzen A, Weinan E. Solving high-dimensional partial differential equations using deep learning[J]. Proceedings of the National Academy of Sciences, 2018, 115(34): 8505-8510. |
|