1 | 黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11. | 1 | HUANG W, SHI Y, DONG Y, et al. Progress and prospects of crop diseases and pests monitoring by remote sensing[J]. Smart Agriculture, 2019, 1(4): 1-11. | 2 | 陈昊楠, 徐翔, 邓晓悦, 等. 单波长杀虫灯对草地贪夜蛾诱杀效果初步评价[J]. 四川农业科技, 2020(2): 41-42. | 2 | CHEN H, XU X, DENG X, et al. Preliminary evaluation of trapping effect of single long wave insecticidal lamp on Noctuidae in grassland[J]. Sichuan Agricultural Science and Technology, 2020(2): 41-42. | 3 | 王向东. 改进型太阳能杀虫灯对凉山州害虫诱杀效果研究[J]. 西昌学院学报(自然科学版), 2020, 34(1): 9-13, 92. | 3 | WANG X. Study on effect of improved solar pest-killing lamp on trapping and killing field pests in liangshan[J]. Journal of Xichang University(Natural Science Edition), 2020, 34(1): 9-13, 92. | 4 | 孙康, 王静秋, 冷晟, 等. 基于物联网的温室环境监控系统[J]. 测控技术, 2019, 38(9): 118-121. | 4 | SUN K, WANG J, LENG S, et al. Monitoring and management system of greenhouse based on IoT[J]. Measurement & Control Technology, 2019, 38(9): 118-121. | 5 | 黄蕊, 郭树强, 赵红茹. 基于无线传感网络的无人机喷药沉积效果检测[J]. 农机化研究, 2019, 41(5): 206-209. | 5 | HUANG R, GUO S, ZHAO H. Detection of UAV spray deposit effect based on wireless sensor network[J]. Journal of Agricultural Mechanization Research, 2019, 41(5): 206-209. | 6 | 徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业, 2020, 2(1): 23-42. | 6 | XU L, CHEN J, DING G, et al. Indoor phenotyping platforms and associated trait measurement: Progress and prospects[J]. Smart Agriculture, 2020, 2(1): 23-42. | 7 | 李凯亮, 舒磊, 黄凯, 等. 太阳能杀虫灯物联网研究现状与展望[J]. 智慧农业, 2019, 1(3): 13-28. | 7 | LI K, SHU L, HUANG K, et al. Research and prospect of solar insecticidal lamps Internet of Things[J]. Smart Agriculture, 2019, 1(3): 13-28. | 8 | 张磊. 杀虫灯主要技术的发展分析[J]. 四川农业农机, 2016(4): 32-33. | 8 | ZHANG L. Development analysis of main technology of insecticidal lamp[J]. Sichuan Agriculture and Agricultural Machinery, 2016(4): 32-33. | 9 | LAM B H, PHAN T T, VUONG L H, et al. Designing a brown planthoppers surveillance network based on wireless sensor network approach[J]. Computer Science, 2013. | 10 | ELIOPOULOS P A, POTAMITIS I, KONTODIMAS D C. Estimation of population density of stored grain pests via bioacoustic detection[J]. Crop Protection, 2016, 85: 71-78. | 11 | LOPEZ O, RACH M O, MIGALLON H, et al. Monitoring pest insect traps by means of low-power image sensor technologies[J]. Sensors, 2012, 12(11): 15801-15819. | 12 | YANG F, SHU L, HUANG K, et al. A partition-based node deployment strategy in solar insecticide lamp internet of things[J]. IEEE Internet of Things Journal, 2020. doi: 10.1109/JIOT.2020.2996514. | 13 | CHOUIKHI S, KORBI I E, GHAMRIDOUDANE Y, et al. A survey on fault tolerance in small and large scale wireless sensor networks[J]. Computer Communications, 2015, 69(69): 22-37. | 14 | MORIDI E, HAGHPARAST M, HOSSEINZADEH M, et al. Fault management frameworks in wireless sensor networks: A survey[J]. Computer Communications, 2020, 155: 205-226. | 15 | SWAIN R R, DASH T, KHILAR P M. A complete diagnosis of faulty sensor modules in a wireless sensor network[J]. Ad Hoc Networks, 2019, 93: 101924-101944. | 16 | CHESSA S, SANTI P. Crash faults identification in wireless sensor networks[J]. Computer Communications, 2002, 25(14): 1273-1282. | 17 | PANDA M, KHILAR P M. Distributed soft fault detection algorithm in wireless sensor networks using statistical test[C]// IEEE International Conference on Parallel Distributed & Grid Computing. Piscataway, New York, USA: IEEE, 2012. | 18 | ELSAYED W, ELHOSENY M, SABBEH S, et al. Self-maintenance model for wireless sensor networks[J]. Computers and Electrical Engineering, 2017, 7: 99-812. | 19 | HE W, QIAO P, ZHOU Z, et al. A new belief-rule-based method for fault diagnosis of wireless sensor network[J]. IEEE Access, 2018, 6: 9404-9419. | 20 | PARADIS L, HAN Q. A survey of fault management in wireless sensor networks[J]. Journal of Network and Systems Management, 2007, 15(2): 171-190. | 21 | YU M, MOKHTAR H, MERABTI M. A survey on fault management in wireless sensor networks[J]. IEEE Wireless Communications, 2008, 14(6): 13-19. | 22 | 李昌炽, 王志勇. 佳多牌频振式杀虫灯的使用注意事项与维修方法[J]. 植物医生, 2012, 25(6): 51-52. | 22 | LI C, WANG Z. Attention and maintenance of Jiaduo Frequency Vibration insecticidal lamp[J]. Plant Doctor, 2012, 25(6): 51-52. | 23 | 宋文海, 李田泽, 乔家振, 等. TCT结构光伏阵列故障检测方法研究[J]. 电源技术, 2019, 43(7): 1164-1167. | 23 | SONG W, LI T, QIAO J, et al. Research on fault detection method of TCT structured photovoltaic array[J]. Chinese Journal of Power Sources, 2019, 43(7): 1164-1167. | 24 | BAE J, LEE M, SHIN C. A data-based fault-detection model for wireless sensor networks[J]. Sustainability, 2019, 11(21): ID 6171. | 25 | SI S, WANG J, YU C, et al. Energy-efficient and fault-tolerant evolution models based on link prediction for large-scale wireless sensor networks[J]. IEEE Access, 2018, 6: 73341-73356. | 26 | JIANG P. A new method for node fault detection in wireless sensor networks[J]. Sensors, 2009, 9(2): 1282-1294. | 27 | LAU B C P, MA E W M, CHOW T W S. Probabilistic fault detector for Wireless Sensor Network[J]. Expert Systems With Applications, 2014, 41(8): 3703-3711. | 28 | PANDA M, KHILAR P M. Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test[J]. Ad Hoc Networks, 2015, 25: 170-184. | 29 | JIN X, CHOW T W S, SUN Y, et al. Kuiper test and autoregressive model-based approach for wireless sensor network fault diagnosis[J]. Wireless Networks, 2015, 21(3): 829-839. | 30 | PENG T, CHOW T W S. Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 933-940. | 31 | O?NER C, BUCHMANN E, B?HM K. Identifying defective nodes in wireless sensor networks[J]. Distributed and Parallel Databases, 2016, 34(4): 591-610. | 32 | CHANAK P, BANERJEE I, SHERRATT R S. Mobile sink based fault diagnosis scheme for wireless sensor networks[J]. Journal of Systems and Software, 2016, 119: 45-57. | 33 | SULIEMAN N I, GITLIN R D. Ultra-reliable and energy efficient wireless sensor networks[C]// Wireless and Microwave Technology Conference. Piscataway, New York, USA: IEEE, 2018. | 34 | JASSBI S J, MORIDI E. Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC[J]. Wireless Personal Communications, 2019, 107(1): 373-391. | 35 | LIU L, HAN G, HE Y, et al. Fault-tolerant event region detection on trajectory pattern extraction for industrial wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2072-2080. | 36 | ZHAO M, TIAN Z, CHOW T W S. Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation[J]. Neural Computing and Applications, 2019, 31(8): 4019-4030. | 37 | JAVAID A, JAVAID N, WADUD Z, et al. Machine learning algorithms and fault detection for improved belief function based decision fusion in wireless sensor networks[J]. Sensors, 2019, 19(6): ID 1334. | 38 | FISSAOUI M E, BENI-HSSANE A, SAADI M. Energy efficient and fault tolerant distributed algorithm for data aggregation in wireless sensor networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(2): 569-578. | 39 | MORIDI E, HAGHPARAST M, HOSSEINZADEH M, et al. Novel fault-tolerant clustering-based multipath algorithm (FTCM) for wireless sensor networks[J]. Telecommunication Systems, 2020, 174: 411-424. | 40 | HEINZELMAN W R. Energy-efficient communication protocol for wireless microsensor networks[C]// IEEE Computer Society. Piscataway, New York, USA: IEEE, 2000. | 41 | LIN J, CHELLIAH P R, HSU M, et al. Efficient fault-tolerant routing in IoT wireless sensor networks based on bipartite-flow graph modeling[J]. IEEE Access, 2019, 7: 14022-14034. | 42 | SWAIN R R, KHILAR P M, DASH T. Fault diagnosis and its prediction in wireless sensor networks using regressional learning to achieve fault tolerance[J]. International Journal of Communication Systems, 2018, 31(14): 3769-3786. | 43 | RODRIGUES A, CAMILO T, SILVA J S, et al. Diagnostic tools for wireless sensor networks: A comparative survey[J]. Journal of Network and Systems Management, 2013, 21(3): 408-452. | 44 | RAMANATHAN N, CHANG K, KAPUR R, et al. Sympathy for the sensor network debugger[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2005. | 45 | YANG J, SOFFA M L, SELAVO L, et al. Clairvoyant: A comprehensive source-level debugger for wireless sensor networks[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2007. | 46 | RINGWALD M, ROMER K, VITALETTI A, et al. Passive inspection of sensor networks[C]// Distributed Computing in Sensor Systems. Heidelberg, Berlin, Germany: Springer, 2007. | 47 | KHAN M M, LE H K, AHMADI H, et al. Dustminer: Troubleshooting interactive complexity bugs in sensor networks[C]// International Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2008. | 48 | COLIN A, HARVEY G, LUCIA B, et al. An Energy-interference-free hardware-software debugger for intermittent energy-harvesting systems[C]// Architectural Support for Programming Languages and Operating Systems. New York, USA: ACM, 2016. | 49 | YIN Z, LI F, SHEN M, et al. Fault-tolerant topology for energy-harvesting heterogeneous wireless sensor networks[C]// International Conference on Communications. Piscataway, New York: IEEE, 2015. | 50 | ZHANG X, YAO G, DING Y, et al. An improved immune system-inspired routing recovery scheme for energy harvesting wireless sensor networks[J]. Soft Computing, 2017, 21(20): 5893-5904. | 51 | video “Demo.” High voltage discharge exhibits severe effect on ZigBee-based device in solar insecticidal lamps Internet of Things[EB/OL]. (2020-01-13) [2020-06-08]. . |
|