1 | 尚建伟, 蒋红海, 喻刚, 等. 基于深度学习的杂草识别系统[J]. 软件导刊, 2020, 19(7): 127-130. | 1 | SHANG J, JIANG H, YU G, et al. Weed recognition system based on deep learning[J]. Software Guide, 2020, 19(7): 127-130. | 2 | 侯雨, 曹丽英, 丁小奇, 等. 基于边缘检测和BP神经网络的大豆杂草识别研究[J]. 中国农机化学报, 2020, 41(7): 185-190. | 2 | HOU Y, CAO L, DING X, et al. Research on soybean weed identification based on edge detection and BP neural network[J]. Chinese Journal of Agricultural Mechanization, 2020, 41(7): 185-190. | 3 | ARAVIND R, DAMAN M, KARIYAPPA B S. Design and development of automatic weed detection and smart herbicide sprayer robot[C]// 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS). Piscataway, New York, USA: IEEE, 2015: 257-261. | 4 | 任全会, 杨保海. 图像处理技术在田间杂草识别中应用研究[J]. 中国农机化学报, 2020, 41(6): 154-158. | 4 | REN Q, YANG B. Application of image processing technology in field weed identification[J]. Chinese Journal of Agricultural Mechanization, 2020, 41(6) :154-158. | 5 | SIDDIQI M H, AHMAD I, SULAIMAN S B. Weed recognition based on erosion and dilation segmentation algorithm[C]// 2009 International Conference on Education Technology and Computer. Piscataway, New York, USA: IEEE, 2009: 224-228. | 6 | LOTTES P, HOEFERLIN M, SANDER S, et al. An effective classification system for separating sugar beets and weeds for precision farming applications[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New York, USA: IEEE, 2016: 5157-5163. | 7 | CICCO M D, POTENA C, GRISETTI G, et al. Automatic model based dataset generation for fast and accurate crop and weeds detection[C]// 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New York, USA: IEEE, 2017: 5188-5195. | 8 | CZYMMEK V, HARDERS L O, KNOLL F J, et al. Vision-based deep learning approach for real-time detection of weeds in organic farming[C]// 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Piscataway, New York, USA: IEEE, 2019: 1-5. | 9 | 彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究[J]. 华南农业大学学报, 2020(6): 75-81. | 9 | PENG W, LAN Y, YUE X, et al. Research on weed identification in rice paddy field based on deep convolutional neural network[J]. Journal of South China Agricultural University, 2020(6): 75-81. | 10 | 魏靖, 王玉亭, 袁会珠, 等. 基于深度学习与特征可视化方法的草地贪夜蛾及其近缘种成虫识别[J]. 智慧农业(中英文), 2020, 2(3): 75-85. | 10 | WEI J, WANG Y, YUAN H, et al. Identification and morphological analysis of adult spodoptera frugiperda and its close related species using deep learning[J]. Smart Agriculture, 2020, 2(3): 75-85. | 11 | 王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5): 144-151. | 11 | WANG C, WU X, LI Z. Extraction of multi-scale layered features for identification of maize weeds based on convolutional neural network[J]. Transactions of the CSAE, 2012, 34(5): 144-151. | 12 | UTTAR_P. An experimental set up for utilizing convolutional neural network in automated weed detection[C]// 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). Ghaziabad, India: Department of CS, 2019: 1-6. | 13 | RIST Y, SHENDRYK I, DIAKOGIANNIS F, et al. Weed mapping using very high resolution satellite imagery and fully convolutional neural network[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IGARSS, 2019: 9784-9787. | 14 | UMAMAHESWARI S, ARJUN R, MEGANATHAN D. Weed detection in farm crops using parallel image processing[C]// 2018 Conference on Information and Communication Technology (CICT). Jabalpur, India: CIC, 2018: 1-4. | 15 | CFAWAKHERJI M, YOUSSEF A, BLOISI D, et al. Crop and weeds classification for precision agriculture using context-independent pixel-wise segmentation[C]// 2019 Third IEEE International Conference on Robotic Computing (IRC). Piscataway, New York, USA: IEEE, 2019: 146-152. | 16 | VEDULA R, NANDA A, GOCHHAYAT S S, et al. Computer vision assisted autonomous intra-row weeder[C]// 2018 International Conference on Information Technology (ICIT). Bhubaneswar, India: ICIT, 2018: 79-84. | 17 | BABIKER I, XIE W, CHEN G. Recognition of dandelion weed via computer vision for a weed removal robot[C]// 2019 1st International Conference on Industrial Artificial Intelligence (IAI). Shenyang, China: Industrial and Aerospace Engineering Concordia University Montreal Quebec Canada, 2019: 1-6. | 18 | SARVINI T, SNEHA T, GOWTHAMI G S S, et al. Performance comparison of weed detection algorithms[C]// 2019 International Conference on Communication and Signal Processing (ICCSP). Piscataway, New York, USA: IEEE, 2019: 843-847. | 19 | BARRERO O, PERDOMO S A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields[J]. Precision Agriculture, 2018, 19: 809-822. | 20 | TEJEDA A J I, CASTRO R C. Algorithm of weed detection in crops by computational vision[C]// 2019 International Conference on Electronics, Communications and Computers (CONIELECOMP). Cholula, Mexico: CONIELECOMP, 2019: 124-128. | 21 | BAH M D, HAFIANE A, CANALS R. Weeds detection in UAV imagery using SLIC and the Hough transform[C]// 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). Piscataway, New York, USA: IEEE, 2017: 1-6. | 22 | BAKHSHIPOUR A, JAFARI A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features[J]. Computers and Electronics in Agriculture, 2018, 145: 153-160. | 23 | TANG J, CHEN X, MIAO R, et al. Weed detection using image processing under different illumination for site-specific areas spraying[J]. Computers and Electronics in Agriculture, 2016, 122: 103-111. | 24 | WANG A, ZHANG W, WEI X. A Review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240. | 25 | BAKHSHIPOUR A, JAFARI A, NASSIRI S M, et al. Weed segmentation using texture features extracted from wavelet sub-images[J]. Biosystems Engineering, 2017, 157: 1-12. | 26 | 张燕, 李庆学, 吴华瑞. 基于核相互子空间法的番茄叶部病害快速识别模型[J]. 智慧农业(中英文), 2020, 2(3): 86-97. | 26 | ZHANG Y, LI Q, WU H. Rapid recognition model of tomato leaf diseases based on kernel mutual subspace method[J]. Smart Agriculture, 2020, 2(3): 86-97. | 27 | MCCOOL C S, BEATTIE J, FIRN J, et al. Efficacy of mechanical weeding tools: A study into alternative weed management strategies enabled by robotics[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 1184-1190. |
|