1 | TAI K, A-R El-SAYED, SHAHRIARI M, et al. State of the art robotic grippers and applications[J]. Robotics, 2016, 5(2): ID 11. | 2 | BLANES C, MELLADO M, ORTIZ C, et al. Technologies for robot grippers in pick and place operations for fresh fruits and vegetables[J]. Spanish Journal of Agricultural Research, 2011(4): 1130-1141. | 3 | ERFANI S, JAFARI A, HAJIAHMAD A. Comparison of two data fusion methods for localization of wheeled mobile robot in farm conditions[J]. Artificial Intelligence in Agriculture, 2019, 1: 48-55. | 4 | GRIFT T, ZHANG Q, KONDO N, et al. A review of automation and robotics for the bio-industry[J]. Journal of Biomechatronics Engineering, 2008, 1(1): 37-54. | 5 | LI P, S-H LEE, H-Y HSU. Review on fruit harvesting method for potential use of automatic fruit harvesting systems[J]. Procedia Engineering, 2011, 23: 351-366. | 6 | SARIG Y. Robotics of fruit harvesting: A state-of-the-art review[J]. Journal of Agricultural Engineering Research, 1993, 54(4): 265-280. | 7 | BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814. | 8 | SYED T N, JIZHAN L, XIN Z, et al. Seedling-lump integrated non-destructive monitoring for automatic transplanting with Intel RealSense depth camera[J]. Artificial Intelligence in Agriculture, 2019, 3: 18-32. | 9 | REDDY P V P, SURESH V V N S. A review on importance of universal gripper in industrial robot applications[J]. International Journal of Robotics Research, 2013, 2(2): 255-264. | 10 | MONKMAN G J, HESSE S, STEINMANN R, et al. Robot grippers[M]. Hoboken, New Jersey, USA:John Wiley & Sons, 2007. | 11 | PETTERSSON A, DAVIS S, GRAY J O, et al. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes[J]. Journal of Food Engineering, 2010, 98(3): 332-338. | 12 | RUSSO M, CECCARELLI M, CORVES B, et al. Design and test of a gripper prototype for horticulture products[J]. Robotics and Computer-Integrated Manufacturing, 2017, 44(1): 266-275. | 13 | BULANON D M, KATAOKA T. Fruit detection system and an end effector for robotic harvesting of Fuji apples[J]. Agricultural Engineering International: CIGR Journal, 2010, 12(1): 203-210. | 14 | LIU J, LI P, LI Z. A multi-sensory end-effector for spherical fruit harvesting robot[C]// The 2007 IEEE International Conference on Automation and Logistics. Piscataway, New York, USA: IEEE, 2007. | 15 | Y-C CHIU, CHEN S, CHANG Y-C. Development of a circular grafting robotic system for watermelon seedlings[J]. Applied Engineering in Agriculture, 2010, 26(6): 1077-1084. | 16 | YAMADA H. Development of a grafting robot[C]// Proceedings of International Symposium on Automation and Robotics in Bio-production and Processing. 1995: 241-248. | 17 | HENTEN E J V. Greenhouse mechanization: State of the art and future perspective[C]// International Symposium on Greenhouses, Environmental Controls and In-house Mechanization for Crop Production in the Tropics and Sub-Tropics. Cameron Highlands, Pahang, Malaysia: International Society for Horticultural Science, 2006. | 18 | GAO G, FENG T, YANG H, et al. Development and optimization of end-effector for extraction of potted anthurium seedlings during transplanting[J]. Applied Engineering in Agriculture, 2016, 32(1): 37-46. | 19 | HU J, YAN X, MA J, et al. Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot[J]. Computers and Electronics in Agriculture, 2014, 107: 64-72. | 20 | HAN L, MAO H, HU J, et al. Development of a doorframe-typed swinging seedling pick-up device for automatic field transplantation[J]. Spanish Journal of Agricultural Research, 2015, 13(2): ID e0210. | 21 | KARKEE M, ADHIKARI B. A method for three-dimensional reconstruction of apple trees for automated pruning[J]. Transactions of the ASABE, 2015, 58(3): 565-574. | 22 | MOORE F W. Robotic fruit tree pruner and harvester machine: US9226446B2[P]. 2016. | 23 | HUANG B, SHAO M, CHEN W. Design and research on end effector of a pruning robot[J]. International Journal of Simulation Systems, Science & Technology, 2015, 17(36): ID 19. | 24 | ARMADA M A, MUSCATO G, PRESTIFILIPPO M, et al. A prototype of an orange picking robot: Past history, the new robot and experimental results[J]. Industrial Robot: An International Journal, 2005, 32(2): 128-138. | 25 | AN X, LI Z, ZUDE-SASSE M, et al. Characterization of textural failure mechanics of strawberry fruit[J]. Journal of Food Engineering, 2020, 282: ID 110016. | 26 | JHA K, DOSHI A, PATEL P, et al. A comprehensive review on automation in agriculture using artificial intelligence[J]. Artificial Intelligence in Agriculture, 2019, 2: 1-12. | 27 | WANG L, ZHANG H. An adaptive fuzzy hierarchical control for maintaining solar greenhouse temperature[J]. Computers and Electronics in Agriculture, 2018, 155: 251-256. | 28 | ZHANG B, GU B, TIAN G, et al. Challenges and solutions of optical-based nondestructive quality inspection for robotic fruit and vegetable grading systems: A technical review[J]. Trends in Food Science & Technology, 2018, 81: 213-231. | 29 | SAM R, NEFTI S. Design and development of flexible robotic gripper for handling food products[C]// 2008 10th International Conference on Control, Automation, Robotics and Vision. Piscataway, New York, USA: IEEE, 2008: 1684-1689. | 30 | LI B, VIGNEAULT C, WANG N. Research development of fruit and vegetable harvesting robots in China[J]. Stewart Postharvest Review, 2010, 6(3): 1-8. | 31 | BAC C W, HENTEN E JVAN, HEMMING J, et al. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead[J]. Journal of Field Robotics, 2014, 31(6): 888-911. | 32 | YUANSHEN Z, GONG L, LIU C, et al. Dual-arm robot design and testing for harvesting tomato in greenhouse[J]. IFAC-Papers Online, 2016, 49(16): 161-165. | 33 | BOUBEKRI N, CHAKRABORTY P. Robotic grasping: Gripper designs, control methods and grasp configurations—A review of research[J]. Integrated Manufacturing Systems, 2002, 13(7): 520-531. | 34 | BECHAR A. Robotics in horticultural field production[J]. Stewart Postharvest Review, 2010, 6(3): 1-11. | 35 | GONZáLEZ S R, RODRíGUEZ D F, SáNCHEZ-HERMOSILLA L J, et al. Navigation techniques for mobile robots in greenhouses[J]. Applied Engineering in Agriculture, 2009, 25(2): 153-165. | 36 | LI M, IMOU K, WAKABAYASHI K, et al. Review of research on agricultural vehicle autonomous guidance[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(3): 1-16. | 37 | JIMENEZ A, CERES R, PONS J L. A survey of computer vision methods for locating fruit on trees [J]. Transactions of the ASAE, 2000, 43(6): 1911-1920. | 38 | KAPACH K, BARNEA E, MAIRON R, et al. Computer vision for fruit harvesting robots—State of the art and challenges ahead[J]. International Journal of Computational Vision and Robotics, 2012, 3(1-2): 4-34. | 39 | PRETER A D, ANTHONIS J, BAERDEMAEKER J D. Development of a robot for harvesting strawberries —ScienceDirect[J]. IFAC-PapersOnLine, 2018, 51(17): 14-19. | 40 | XIONG Y, PENG C, GRIMSTAD L, et al. Development and field evaluation of a strawberry harvesting robot with a cable-driven gripper[J]. Computers and Electronics in Agriculture, 2019, 157: 392-402. | 41 | 赵匀, 武传宇, 胡旭东, 等. 农业机器人的研究进展及存在的问题[J]. 农业工程学报, 2003, 19(1): 20-24. | 41 | ZHAO Y, WU C, HU X, et al. Research progress and existing problems of agricultural robots[J]. Transactions of the CSAE, 2003, 19(1): 20-24. | 42 | MONTA M, KONDO N, SHIBANO Y. Agricultural robot in grape production system[C]// IEEE International Conference on Robotics and Automation. Piscataway, New York, USA: IEEE, 1995. | 43 | HAYASHI S, GANNO K, ISHII Y, et al. Robotic harvesting system for eggplants[J]. Japan Agricultural Research Quarterly, 2002, 36(3):163-168. | 44 | BONDS R, SHARMA G S, KONDO Y, et al. Pollen food allergy syndrome to tomato in mountain cedar pollen hypersensitivity[J]. Molecular Immunology, 2019, 111: 83-86. | 45 | RAJENDRA P, KONDO N, NINOMIYA K, et al. Machine vision algorithm for robots to harvest strawberries in tabletop culture greenhouses[J]. Engineering in Agriculture Environment & Food, 2009, 2(1): 24-30. | 46 | HABARAGAMUWA H, OGAWA Y, SUZUKI T, et al. Detecting greenhouse strawberries (mature and immature), using deep convolutional neural network[J]. Engineering in Agriculture, 2018, 11(3): 127-138. | 47 | KIM H-J, K-MKU, CHOI S, et al. Vegetal-derived biostimulant enhances adventitious rooting in cuttings of basil, tomato, and chrysanthemum via brassinosteroid-mediated processes[J]. Agronomy, 2019, 9(2): ID 74. | 48 | WANG L, ZHAO B, FAN J, et al. Development of a tomato harvesting robot used in greenhouse[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 140-149. | 49 | 霍银龙, 白倬宁, 任文武, 等. 全自动旋转式柑橘机械采摘机的设计[J]. 内燃机与配件, 2018(11): 24-25. | 49 | HUO Y, BAI Z, REN W, et al. Design of a fully automatic rotary citrus mechanical picker[J]. Internal Combustion Engines and Accessories, 2018(11): 24-25. | 50 | YU Y, SUN Z, ZHAO X, et al. Design and implementation of an automatic peach-harvesting robot system[C]// 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). Piscataway, New York, USA: IEEE, 2018. | 51 | 刘继展, 李萍萍, 李智国, 等. 面向机器人采摘的番茄力学特性试验[J]. 农业工程学报, 2008, 24(12): 66-70. | 51 | LIU J, LI P, LI Z, et al. Experimental study on mechanical properties of tomatoes for robotic harvesting[J]. Transactions of the CSAE, 2008, 24(12): 66-70. | 52 | 刘博瀚. 灵武长枣果实力学特性与采摘机械损伤研究[D]. 银川: 宁夏大学, 2018. | 52 | LIU B. Research on fruit mechanical properties and picking mechanical damage of Lingwu Long Jujube[D]. Yinchuan: Ningxia University, 2018. | 53 | DIMEAS F, SAKO D, MOULIANITIS V, et al. Towards designing a robot gripper for efficient strawberry harvesting[C]// 22nd International Workshop on Robotics in Alpe-Adria-Danube Region. Hoboken, New Jersey, USA: Wiley, 2013. | 54 | 王荣炎, 郑志安, 徐丽明, 等. 枸杞气吸采摘参数试验研究[J]. 农机化研究, 2019, 41(11): 171-177. | 54 | WANG R, ZHENG Z, XU L, et al. Experimental study on the parameters of lycium barbarum extraction by suction[J]. Journal of Agricultural Mechanization Research, 2019, 41(11): 171-177. | 55 | 张高阳. 基于位姿的苹果采摘机器人抓取研究[D]. 南京: 南京农业大学, 2012. | 55 | ZHANG G. Research on grasping of apple picking robot based on pose[D]. Nanjing: Nanjing Agricultural University, 2012. | 56 | 姚立健, 边起, 雷良育, 等. 基于惯性主轴的水果姿态检测[J]. 湖北农业科学, 2012, 51(17): 3862-3865. | 56 | YAO L, BIAN Q, LEI L, et al. Fruit posture detection based on inertial principal axis[J]. Hubei Agricultural Sciences, 2012, 51(17): 3862-3865. | 57 | 张哲. 柑橘采摘机器人采摘姿态及序列研究[D]. 重庆: 重庆理工大学, 2018. | 57 | ZHANG Z. Research on the picking posture and sequence of a citrus picking robot[D]. Chongqing: Chongqing University of Technology, 2018. | 58 | SABOUR S, FROSST N, HINTON GE. Dynamic routing between capsules[J/OL]. 2017. arXiv:1710. | 58 | 09829 [cs.CV]. | 59 | HU Y, HUGONOT J, FUA P, et al. Segmentation-driven 6D object pose estimation[J/OL]. 2018. arXiv:1812. | 59 | 02541 [cs.CV]. | 60 | HOHIMER C J, WANG H, BHUSAL S, et al. Design and field evaluation of a robotic apple harvesting system with a 3D-printed soft-robotic end-effector[J]. Transactions of the ASABE, 2019, 62(2): 405-414. | 61 | ZHAO D, LYU J, JI W, et al. Design and control of an apple harvesting robot[J]. Biosystems Engineering, 2011, 110(2): 112-122. | 62 | LIU C, CHIU C, CHEN T, et al. A Soft Robotic Gripper Module with 3D Printed Compliant Fingers for Grasping Fruits[C]// 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway, New York, USA: IEEE, 2018: 736-741. | 63 | YAGUCHI H, NAGAHAMA K, HASEGAWA T, et al. Development of an autonomous tomato harvesting robot with rotational plucking gripper[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New York, USA: IEEE, 2016: 652-657. | 64 | YESHMUKHAMETOV A, KOGANEZAWA K, BURIBAYEV Z, et al. Development of continuum robot arm and gripper for harvesting cherry tomatoes[J/OL]. Preprints2019, 2019120237. doi: 10.20944/preprints201912.0237.v1. | 65 | DE PRETER A, ANTHONIS J, DE BAERDEMAEKER J. Development of a robot for harvesting strawberries[J]. IFAC-PapersOnLine, 2018, 51(17): 14-19. | 66 | ZHAO D, LYU J, WEI J, et al. Design and control of an apple harvesting robot[J]. Biosystems Engineering, 2011, 110(2): 112-122. | 67 | SETIAWAN A I, FURUKAWA T, PRESTON A. A low-cost gripper for an apple picking robot[C]// IEEE International Conference on Robotics and Automation, 2004 Proceedings. Piscataway, New York, USA: IEEE, 2004: 4448-4453. | 68 | KAUR M, KIM W S. Toward a smart compliant robotic gripper equipped with 3D-designed cellular fingers[J]. Advanced Intelligent Systems, 2019, 1(3): ID 1900019. | 69 | XIE M, ZHU M, YANG Z, et al. Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing [J]. Nano Energy, 2021, 79: ID 105438. | 70 | CHO S, JUN J P, JEONG H, et al. Design of a 4-Finger End-Effector for paprika harvesting[C]// 2018 18th International Conference on Control, Automation and Systems (ICCAS). Piscataway, New York, USA: IEEE, 2018: 255-257. | 71 | BROWN J, SUKKARIEH S. Design and evaluation of a modular robotic plum harvesting system utilizing soft components[J]. Journal of Field Robotics, 2020. doi: 10.1002/rob.21987. | 72 | CECCARELLI M, FIGLIOLINI G, OTTAVIANO E, et al. Designing a robotic gripper for harvesting horticulture products[J]. Robotica, 2000, 18(1): 105-111. | 73 | DIMEAS F, SAKO D V, MOULIANITIS V C, et al. Design and fuzzy control of a robotic gripper for efficient strawberry harvesting[J]. Robotica, 2015, 33(5): 1085-1098. | 74 | HAYASHI S, SHIGEMATSU K, YAMAMOTO S, et al. Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105(2): 160-171. | 75 | HAN K-S, KIM S-C, Y-BLEE, et al. Strawberry harvesting robot for bench-type cultivation[J]. Journal of Biosystems Engineering, 2012, 37(1): 65-74. | 76 | BACHCHE S, OKA K. Design, modeling and performance testing of end-effector for sweet pepper harvesting robot hand[J]. Journal of Robotics and Mechatronics, 2013, 25(4): 705-717. | 77 | HEMMING J, BAC C W, BVAN TUIJL, et al. A robot for harvesting sweet-pepper in greenhouses[C/OL]// Proceedings International Conference of Agricultural Engineering. 2014. [2020-11-10]. | 78 | LEHNERT C, SA I, MCCOOL C, et al. Sweet pepper pose detection and grasping for automated crop harvesting[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New York, USA: IEEE, 2016: 2428-2434. | 79 | SHAH S H, ARSALAN M, KHAN S G, et al. Design and Compliance Control of a Robotic Gripper for Orange Harvesting[C]// 2019 22nd International Multitopic Conference (INMIC). Piscataway, New York, USA: IEEE, 2019: 1-5. | 80 | WANG Y, YANG Y, YANG C, et al. End-effector with a bite mode for harvesting citrus fruit in random stalk orientation environment[J]. Computers and Electronics in Agriculture, 2019, 157: 454-470. | 81 | 史慧文, 石慧奇, 王继祥. 草莓采摘手爪结构设计[J]. 农机化研究, 2014, 36(9): 94-98. | 81 | SHI H, SHI H, WANG J. Structural design of strawberry picking gripper[J]. Journal of Agricultural Mechanization Research, 2014, 36(9): 94-98. | 82 | Festo. TentacleGripper[EB/OL]. [2020-11-10]. | 83 | 软体机器人科技有限公司. 柔性制造-气动夹爪-机械手[EB/OL]. [2020-11-20]. . | 84 | SHINTAKE J, ROSSET S, SCHUBERT B, et al. DEA for soft robotics: 1-gram actuator picks up a 60-gram egg[C]// Proc. SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD). Bellingham, WA, USA: SIPE Digital Library, 2015. | 85 | BOGUE R. Flexible and soft robotic grippers: the key to new markets?[J]. Industrial Robot, 2016, 43(3): 258-263. | 86 | LIU C-H, CHEN T-L, C-H CHIU, et al. Optimal design of a soft robotic gripper for grasping unknown objects[J]. Soft Rrobotics, 2018, 5(4): 452-465. | 87 | ZENG Y. Environment-based design (EBD): A methodology for transdisciplinary design+[J]. Journal of Integrated Design and Process Science, 2015, 19(1): 5-24. | 88 | DAVIDSON J R, MO C. Mechanical design and initial performance testing of an apple-picking end-effector[C]// ASME 2015 International Mechanical Engineering Congress and Exposition. New York, USA: ASME Press, 2015: ID IMECE2015-50482, V04AT04A011. | 89 | SAKAI S, OSUKA K, FUKUSHIMA H, et al. Watermelon harvesting experiment of a heavy material handling agricultural robot with LQ control[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, New York, USA: IEEE, 2002: 769-774. | 90 | JIA B, ZHU A, YANG S X, et al. Integrated gripper and cutter in a mobile robotic system for harvesting greenhouse products[C]// 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, New York, USA: IEEE, 2009. | 91 | BACHCHE S, OKA K, SAKAMOTO H. Design and modeling of gripper and cutting tool system for sweet pepper harvesting robot hand [C/OL]// The 20th MAGDA Conference in Pacific Asia. Kaohsiung, Taiwan. 2011. [2020-11-10]. | 92 | 姬长英, 张纯, 顾宝兴, 等. 梳割气吸一体式贡菊采摘机设计与试验[J]. 农业机械学报, 2017, 48(11): 137-145. | 92 | JI C, ZHANG C, GU B, et al. Design and experiment of shear-sucting mountain chrysanthemum picking machine [J]. Transactions of the CSAM, 2017, 48(11): 137-145. | 93 | DAVIDSON J, HOHIMER C, MO C, et al. Dual robot coordination for apple harvesting[C]// Proceedings of the 2017 ASABE Annual International Meeting. Michigan, USA: American Society of Agricultural and Biological Engineers, 2017: ID 1700567. | 94 | KARIS M S, SAAD W H M, ALI N M, et al. Fruit sorting based on machine vision technique[J]. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 2016, 8(4): 31-35. | 95 | PATIL K, KADAM S, KALE S, et al. Machine vision based autonomous fruit inspection and sorting[J]. International Research Journal of Engineering and Technology, 2016, 3(7): 413-417. | 96 | CHITHRA P L, HENILA M. Apple fruit sorting using novel thresholding and area calculation algorithms[J]. Soft Computing, 2021, 25: 431-445. | 97 | NASIRI A, TAHERI-GARAVAND A, ZHANG Y. Image-based deep learning automated sorting of date fruit[J]. Postharvest Biology and Technology, 2019, 153: 133-141. | 98 | DEWI T, RISMA P, OKTARINA Y. Fruit sorting robot based on color and size for an agricultural product packaging system[J]. Bulletin of Electrical Engineering and Informatics, 2020, 9(4): 1438-1445. | 99 | 顾宝兴. 智能移动式水果采摘机器人系统的研究[D]. 南京: 南京农业大学, 2012. | 99 | GU X. Research on intelligent mobile fruit picking robot[D]. Nanjing: Nanjing Agricultural University, 2012. | 100 | LIU C, GONG L, ZHANG W. Manipulating complex robot behavior for autonomous and continuous operations[M]. Pisa: Service Robotics, 2020. | 101 | FENG Q, WANG X, WANG G, et al. Design and test of tomatoes harvesting robot[C]// 2015 IEEE International Conference on Information and Automation. Piscataway, New York, USA: IEEE, 2015: 949-952. | 102 | FENG Q, ZHENG W, QIU Q, et al. Study on strawberry robotic harvesting system[C]// 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Piscataway, New York, USA: IEEE, 2012: 320-324. | 103 | LYU J, ZHAO D, JI W, et al. Recognition of apple fruit in natural environment[J]. Optik, 2016, 127(3): 1354-1362. | 104 | AREFI A, MOTLAGH A M, MOLLAZADE K, et al. Recognition and localization of ripen tomato based on machine vision[J]. Australian Journal of Crop Science, 2011, 5(10): 1144-1149. | 105 | WANG D, SONG H, YU X, et al. An improved contour symmetry axes extraction algorithm and its application in the location of picking points of apples[J]. Spanish journal of agricultural research, 2015, 13(1): ID e02-005. | 106 | WANG M, ZHOU J, SHANG W, et al. A novel algorithm for green citrus detection based on the reticulate grayladder feature[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(10): 109-126. | 107 | LINKER R, COHEN O, NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture, 2012, 81: 45-57. | 108 | SONG Y, GLASBEY C, HORGAN G, et al. Automatic fruit recognition and counting from multiple images[J]. Biosystems Engineering, 2014, 118: 203-215. | 109 | LING X, ZHAO Y, GONG L, et al. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision[J]. Robotics and Autonomous Systems, 2019, 114: 134-143. | 110 | 初广丽, 张伟, 王延杰, 等. 基于机器视觉的水果采摘机器人目标识别方法[J]. 中国农机化学报, 2018, 39(2): 83-88. | 110 | CHU G, ZHANG W, WANG Y, et al. Target recognition method of fruit picking robot based on machine vision[J]. Chinese Journal of Agricultural Machinery Chemistry, 2018, 39 (2): 83-88. | 111 | STAJNKO D, RAKUN J, BLANKE M. Modelling apple fruit yield using image analysis for fruit colour, shape and texture[J]. European Journal of Horticultural Science, 2009, 74(6): 260-267. | 112 | FENG Q, WEI C, ZHOU J, et al. Design of structured-light vision system for tomato harvesting robot[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(2): 19-26. | 113 | SA I, GE Z, DAYOUB F, et al. Deepfruits: A fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): ID 1222. | 114 | 傅隆生, 冯亚利, Elkamil, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法简[J]. 农业工程学报, 2018, 34(2): 205-211. | 114 | FU L, FENG Y, ELKAMIL T, et al. Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the CSAE, 2018, 34(2): 205-211. | 115 | RAHNEMOONFAR M, SHEPPARD C. Deep count: Fruit counting based on deep simulated learning[J]. Sensors, 2017, 17(4): ID 905. | 116 | 周云成, 许童羽, 郑伟, 等. 基于深度卷积神经网络的番茄主要器官分类识别方法[J]. 农业工程学报, 2017, 33(15): 219-226. | 116 | ZHOU Y, XU T, ZHENG W, et al. Classification and recognition approaches of tomato main organs based on DCNN[J]. Transactions of the CSAE, 2017, 33(15): 219-226. | 117 | STEIN M, BARGOTI S, UNDERWOOD J. Image based mango fruit detection, localisation and yield estimation using multiple view geometry[J]. Sensors2016, 16(11): ID 1915. | 118 | KHAN M A, AKRAM T, SHARIF M, et al. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features[J]. Computers and Electronics in Agriculture, 2018, 155: 220-236. | 119 | KURT W D, LEWIS M J P, KLEIJN W B. The HSIC bottleneck: Deep learning without back-propagation[J/OL]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4). doi: 10.1609/aaai.v34i04.5950 | 120 | SILWAL A, DAVIDSON J R, KARKEE M, et al. Design, integration, and field evaluation of a robotic apple harvester[J]. Journal of Field Robotics, 2017, 34(6): 1140-1159. | 121 | 熊龙烨, 王卓, 何宇, 等. 果树重建与果实识别方法在采摘场景中的应用[J]. 传感器与微系统, 2019, 38(8): 153-156. | 121 | XIONG L, WANG Z, HE Y, et al. Application of fruit tree reconstruction and fruit recognition methods in picking scenes[J]. Sensors and Microsystems, 2019, 38(8): 153-156. | 122 | LI Y, BU R, SUN M, et al. PointCNN: Convolution on X-Transformed points[J]. 2018. arXiv:1801.07791 [cs.CV]. | 123 | MOHANAN M G, SALGOANKAR A. A survey of robotic motion planning in dynamic environments[J]. Robotics and Autonomous Systems, 2018, 100: 171-185. | 124 | HU X, CHEN L, TANG B, et al. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles[J]. Mechanical Systems and Signal Processing, 2018, 100: 482-500. | 125 | XU W, PAN J, WEI J, et al. Motion planning under uncertainty for on-road autonomous driving[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New York, USA: IEEE,, 2014: 2507-2512. | 126 | JOHNSON D B. A note on Dijkstra's shortest path algorithm[J]. Journal of the ACM, 1973, 20(3): 385-388. | 127 | HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. | 128 | STENTZ A. Optimal and efficient path planning for partially-known environments[C]// Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Piscataway, New York, USA: IEEE, 1994: 3310-3317. | 129 | SANTOS L C, SANTOS F N, PIRES E J S, et al. Path planning for ground robots in agriculture: A short review[C]// 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). Piscataway, New York, USA: IEEE, 2020: 61-66. | 130 | KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986: 5(1): 396-404. | 131 | GAI S N, SUN R, CHEN S J, et al. 6-DOF robotic obstacle avoidance path planning based on artificial potential field method[C]// 2019 16th International Conference on Ubiquitous Robots (UR). Piscataway, New York, USA: IEEE, 2019: 165-168. | 132 | RASEKHIPOUR Y, KHAJEPOUR A, CHEN S, et al. A potential field-based model predictive path-planning controller for autonomous road vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1255-1267. | 133 | KUFFNER J J, LAVALLE S M. RRT-connect: An efficient approach to single-query path planning[C]// IEEE International Conference on Robotics and Automation. Piscataway, New York, USA: IEEE, 2000: 995-1001. | 134 | KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. International Journal of Robotics Research, 2011, 30(7): 846-894. | 135 | ISLAM F, NASIR J, MALIK U, et al. RRT*-Smart: Rapid convergence implementation of RRT* towards optimal solution[C]// 2012 IEEE International Conference on Mechatronics and Automation. Piscataway, New York, USA: IEEE, 2012: 1651-1656. | 136 | WEI K, REN B. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J]. Sensors, 2018, 18(2): ID 571. | 137 | HAN B, LIU S. RRT based obstacle avoidance path planning for 6-DOF manipulator[C]// 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway, New York, USA: IEEE, 2020: 822-827. | 138 | MAC T T, COPOT C, TRAN D T, et al. Heuristic approaches in robot path planning: A survey [J]. Robotics and Autonomous Systems, 2016, 86: 13-28. | 139 | CHIANG H L, HSU J, FISER M, et al. RL-RRT: Kinodynamic motion planning via learning reachability estimators from RL policies[J/OL]. 2019. arXiv:1907. | 139 | 04799 [cs.RO]. | 140 | JAMES S, JOHNS E. 3D simulation for robot arm control with deep Q-Learning[J/OL]. 2016. arXiv:1609. | 140 | 03759 [cs.RO]. | 141 | VECERíK M, HESTER T, SCHOLZ J, et al. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards [J/OL]. 2017. arXiv:1707. | 141 | 08817 [cs.AI]. | 142 | BAC C W, HEMMING J, HENTEN E J V. Stem localization of sweet-pepper plants using the support wire as a visual cue[J]. Computers and Electronics in Agriculture, 2014, 105: 111-120. | 143 | LUO L, TANG Y, ZOU X, et al. Vision-based extraction of spatial information in grape clusters for harvesting robots[J]. Biosystems Engineering, 2016, 151: 90-104. | 144 | LUO L, WEN H, LU Q, et al. Collision-free path-planning for six-DOF serial harvesting robot based on energy optimal and artificial potential field[J]. Complexity, 2018(5): ID 3563846. | 145 | BORYGA M, GRABO? A, KO?ODZIEJ P, et al. Trajectory planning with obstacles on the example of tomato harvest[J]. Agriculture and Agricultural Science Procedia, 2015, 7: 27-34. | 146 | GUO F, CAO Q, MASATERU N. Fruit detachment and classification method for strawberry harvesting robot[J]. International Journal of Advanced Robotic Systems, 2008, 5(1): 41-48. | 147 | 汪迪松, 浦宏杰, 李臻峰, 等. 基于声振法的西瓜内部糖度检测研究[J]. 上海农业学报, 2017, 33(2): 125-130. | 147 | WANG D, PU H, LI Z, et al. Detection of sugar content in watermelon based on the method of sound vibration[J]. Acta Agriculturae Shanghai, 2017, 33(2): 125-130. | 148 | CERES R, PONS J L, JIMéNEZ A R, et al. Design and implementation of an aided fruit‐harvesting robot (Agribot)[J]. Industrial Robot, 1998, 25(5): 337-346. | 149 | ZHAO Y, GONG L, LIU C, et al. Dual-arm robot design and testing for harvesting tomato in greenhouse[J]. IFAC-PapersOnLine, 2016, 49(16): 161-165. | 150 | HUANG C-M, MUTLU B. Anticipatory robot control for efficient human-robot collaboration [C]// 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Piscataway, New York, USA: IEEE, 2016: 83-90. | 151 | ADAMIDES G, KATSANOS C, CONSTANTINOU I, et al. Design and development of a semi-autonomous agricultural vineyard sprayer: Human—robot interaction aspects[J]. Journal of Field Robotics, 2017, 34(8): 1407-1426. | 152 | VASCONEZ J P, KANTOR G A, AUAT CHEEIN F A. Human—robot interaction in agriculture: A survey and current challenges[J]. Biosystems Engineering, 2019, 179: 35-48. | 153 | ARGUENON V, BERGUES-LAGARDE A, ROSENBERGER C, et al. Multi-agent based prototyping of agriculture robots[C]// International Symposium on Collaborative Technologies and Systems (CTS'06). Piscataway, New York, USA: IEEE, 2006: 292-288. | 154 | BAC C W, HEMMING J, BVAN TUIJL, et al. Performance evaluation of a harvesting robot for sweet pepper[J]. Journal of Field Robotics, 2017, 34(6): 1123-1139. |
|