1 | WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annual Review of Genetics, 2018, 52: 421-444. | 2 | 赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18. | 2 | ZHAO C. Big data of plant phenomics and its research progress[J]. Journal of Agricultrual Big Data, 2019, 1(2): 5-18. | 3 | 潘映红.论植物表型组和植物表型组学的概念与范畴[J]. 作物学报, 2015, 41(2): 175-186. | 3 | PAN Y. Analysis of concepts and categories of plant phenome and phenomics[J]. Acta Agronomica Sinica, 2015, 41(2): 175-186. | 4 | 穆金虎, 陈玉泽, 冯慧, 等. 作物育种学领域新的革命:高通量的表型组学时代[J]. 植物科学学报, 2016, 34(6): 962-971. | 4 | MU J, CHEN Y, FENG H, et al. A new revolution in crop breeding: The era of high-throughput phenomics[J]. Plant Science Journal, 2016, 34(6): 962-971. | 5 | FREY T K, YOUNGNER J S. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection[J]. Journal of Virology, 1982, 44(1): 167-174. | 6 | VIZEACOUMAR F J, CHONG Y, BOONE C, et al. A picture is worth a thousand words: Genomics to phenomics in the yeast Saccharomyces cerevisiae[J]. FEBS letters, 2009, 583(11): 1656-1661. | 7 | TARDIEU F, CABRERA-BOSQUET L, PRIDMORE T, et al. Plant phenomics, from sensors to knowledge[J]. Current Biology, 2017, 27(15): R770-R783. | 8 | FURBANK R T, JIMENEZ‐BERNI J A, GEORGE‐JAEGGLI B, et al. Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops[J]. New Phytologist, 2019, 223(4): 1714-1727. | 9 | 玉光惠, 方宣钧. 表型组学的概念及植物表型组学的发展[J]. 分子植物育种, 2009, 7(4): 639-645. | 9 | YU G, FANG X. Concept of phenomics and its development in plant science[J]. Molecular Plant Breeding, 2009, 7(4): 639-645. | 10 | ZHAO C, ZHANG Y, DU J, et al. Crop phenomics: Current status and perspectives[J]. Frontiers in Plant Science, 2019, 10: ID 714. | 11 | DU Z, HU Y, NALI BUTTAR, et al. X‐ray computed tomography for quality inspection of agricultural products: A review[J]. Food Science & Nutrition, 2019, 7(10): 3146-3160. | 12 | 潘晓迪, 张颖, 邵萌, 等. 作物根系结构对干旱胁迫的适应性研究进展[J]. 中国农业科技导报, 2016, 19(2): 51-58. | 12 | PAN X, ZHANG Y, SHAO M, et al. Research progress on adaptive responses of crop root structure to drought stress[J]. Journal of Agricultural Science and Technology, 2016, 19(2): 51-58. | 13 | ZHANG Y, DU J, WANG J, et al. High-throughput micro-phenotyping measurements applied to assess stalk lodging in maize (Zea mays L.)[J]. Biological Research, 2018, 51: 40. | 14 | PAN X, MA L, ZHANG Y, et al. Quantification of root anatomical traits in RGP transgenic maize plants based on Micro-CT[C]// International Conference on Computer and Computing Technologies in Agriculture. Berlin, Germany: Springer, Cham, 2017: 340-346. | 15 | 刘晓涛. 玉米的营养成分及其保健作用[J]. 中国食物与营养, 2009(3): 60-61. | 15 | LIU X. Nutrition components of corn and its functions[J]. Food and Nutrition in China, 2009(3): 60-61. | 16 | HALLAUER A R. Specialty corns[M]. Boca Raton: CRC press, 2000. | 17 | 李竞雄. 美国玉米种质基础[J]. 国外农业科技, 1982(4): 1-7. | 17 | LI J. Germplasm basis of American maize[J]. Foreign Agricultural Science and Technology, 1982(4): 1-7. | 18 | 史振声. 对我国专用特用玉米科研与产业开发问题的思考[J]. 玉米科学, 2004(3): 111-112, 115. | 18 | SHI Z. Thoughts on the scientific research and industrial development of special purpose corn in China[J]. Journal of Maize Sciences, 2004(3): 111-112, 115. | 19 | 韩伟, 吕莹莹, 张萌, 等. 我国特用玉米生产现状与发展对策[J]. 安徽农业科学, 2017, 45(28): 39-41, 77. | 19 | HAN J, LYU Y, ZHANG M, et al. Production status and development countermeasures of special maize in China[J]. Journal of Anhui Agricultural Sciences, 2017, 45(28): 39-41, 77. | 20 | HOU J, ZHANG Y, JIN X, et al. Structural parameters for X-ray micro-computed tomography (μCT) and their relationship with the breakage rate of maize varieties[J]. Plant Methods, 2019, 15(1): 1-11. | 21 | 吴建伟, 郭新宇, 王传宇, 等. 玉米育种自动考种仪[J]. 中国种业, 2013(9): 51-52. | 21 | WU J, GUO X, WANG C, et al. Automatic seed testing instrument for maize breeding[J]. China Seed Industry, 2013(9): 51-52. | 22 | ZHANG Y, WANG J, DU J, et al. Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high‐throughput phenotypic analysis[J]. Plant Biotechnology Journal, 2021, 19(1): 35-50. | 23 | ROUSSEAU D, WIDIEZ T, DI TOMMASO S, et al. Fast virtual histology using X-ray in-line phase tomography: Application to the 3D anatomy of maize developing seeds[J]. Plant Methods, 2015, 11(1): 1-10. | 24 | GUELPA A, DU PLESSIS A, KIDD M, et al. Non-destructive estimation of maize (Zea mays L.) kernel hardness by means of an X-ray micro-computed tomography (μCT) density calibration[J]. Food and Bioprocess Technology, 2015, 8(7): 1419-1429. | 25 | GUELPA A, DU PLESSIS A, MANLEY M. A high-throughput X-ray micro-computed tomography (μCT) approach for measuring single kernel maize (Zea mays L.) volumes and densities[J]. Journal of Cereal Science, 2016, 69: 321-328. | 26 | SHAO M, ZHANG Y, DU J, et al. Fast analysis of maize kernel plumpness characteristics through Micro-CT technology[C]// International Conference on Computer and Computing Technologies in Agriculture. Berlin, Germany: Springer, Cham, 2017: 31-39. | 27 | 张桂华, 冯艳波, 陆卫东. 图像处理的灰度化及特征区域的获取[J]. 齐齐哈尔大学学报, 2007(4): 49-52. | 27 | ZHANG G, FENG Y, LU W. Image processing grayscale and feature region acquisition[J]. Journal of Qiqihar University, 2007(4): 49-52. | 28 | GUSTIN J L, JACKSON S, WILLIAMS C, et al. Analysis of maize (Zea mays) kernel density and volume using microcomputed tomography and single-kernel near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2013, 61(46): 10872-10880. | 29 | 王义发, 汪黎明, 沈雪芳,等. 糯玉米的起源、分类、品种改良及产业发展[J]. 湖南农业大学学报(自然科学版), 2007(S1): 97-102. | 29 | WANG Y, WANG L, SHEN X. et al. Orlgin classification, variety improvement and industry development of waxy corn[J]. Journal of Hunan Agricultural University(Natural Sciences), 2007(S1): 97-102. |
|