Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 68-81.doi: 10.12133/j.smartag.SA202303007
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
LAI Jiazheng(), LI Beibei, CHENG Xiang, SUN Feng, CHENG Juting, WANG Jing, ZHANG Qian(), YE Xiefeng()
Received:
2023-03-14
Online:
2023-06-30
Foundation items:
About author:
LAI Jiazheng, E-mail:laijiazheng23@163.com
corresponding author:
1、ZHANG Qian, E-mail:Zhangqian225@henau.edu.cn;
2、YE Xiefeng, E-mail:yexiefeng@163.com
CLC Number:
LAI Jiazheng, LI Beibei, CHENG Xiang, SUN Feng, CHENG Juting, WANG Jing, ZHANG Qian, YE Xiefeng. Monitoring of Leaf Chlorophyll Content in Flue-Cured Tobacco Based on Hyperspectral Remote Sensing of Unmanned Aerial Vehicle[J]. Smart Agriculture, 2023, 5(2): 68-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202303007
Table 2
Spectral indices and formula of calculation
光谱参数 | 计算公式 | 参考文献 |
---|---|---|
植物色素比率指数(Plant Pigment Ratio,PPR) | PPR=(R550-R450)/(R550+R450) (4) | [ |
红边归一化指数(Red edge Normalized Difference Vegetation Index,RNDVI) | RNDVI=(R750-R705)/(R750+R705) (5) | [ |
红光比率光谱指数(Red Light Ratio Spectral Index,NIR) | NIR=R780/R740 (6) | [ |
归一化叶绿素指数(Normalized Difference Chlorophyll Index NDCI) | NDCI=(R762-R527)/(R762+R527) (7) | [ |
简单比值指数(Simple Ratio Index,SR) | SR=R750/R705 (8) | [ |
红光叶绿素光谱指数(Red-edge model index,CIred-edge) | CIred-edge=(R800/R720)-1 (9) | [ |
优化土壤调节植被指数(Optimal Soil Adjusted Vegetation Index,OSAVI) | OSAVI=1.16(R800-R670)/(R800+R670+0.16) (10) | [ |
红边归一化光谱指数(Normalized Difference Red Edge Index,NDRE) | NDRE=(R790-R720)/(R790+R720) (11) | [ |
修正归一化光谱指数(Modified Normalized Difference Spectral Index,mND705) | mND705=(R750-R705)/(R750+R705+2R445) (12) | [ |
Vogelmann红边指数(Vogelman Red Edge Index,VOG) | VOG=R740/R720 (13) | [ |
红边位置指数(Red Edge Position Index,REP) | REP=700+40((R670+R780)/2-R700)/(R740-R700) (14) | [ |
归一化光谱指数550(ND550) | ND550=(R750-R550)/(R750+R550) (15) | [ |
绿光叶绿素光谱指数(Green Model Index,CIgreen) | CIgreen=(R800/R560)-1 (16) | [ |
修正简单比值指数(Modified Simple Ratio Index,mSRI) | mSRI=(R750-R445)/(R705-R445) (17) | [ |
转换叶绿素吸收反射率指数(Transformed Chlorophyll Absorption in Reflectance Index,TCARI) | TCARI=3((R700-R670)-0.2(R700-R550)(R700/R670)) (18) | [ |
TCARI/OSAVI | TCARI/OSAVI =[3((R700-R670)-0.2(R700-R550)(R700/R670))]/[1.16(R800-R670)/(R800+R670+0.16)] (19) | [ |
绿光归一化植被指数(Green Normalized Difference Vegetation Index,GNDVI) | GNDVI=(R790-R550)/(R790+R550) (20) | [ |
陆地叶绿素指数(Meris Terrestrial Chlorophyll Index,MTCI) | MTCI=(R754-R709)/(R709-R681) (21) | [ |
差值植被指数(Difference Vegetation Index,DSI) | DSI=R i -R j (22) | 本文 |
比值植被指数(Ratio Spectral Index,RSI) | RSI=R i /R j (23) | 本文 |
归一化植被指数(Normalized Difference Spectral Index,NDSI) | NDSI=(R i -R j )/(R i +R j ) (24) | 本文 |
Table 3
Variation of leaf chlorophyll content (LCC) in flue-cured tobacco leaves at different growth stages
生长期 | 样本数/个 | LCC范围/ (mg.g-1) | LCC平均值/(mg.g-1) | 标准差 | 变异系数/% |
---|---|---|---|---|---|
移栽后32 d | 45 | 0.73~2.19 | 1.53 | 0.35 | 23.20 |
移栽后48 d | 45 | 0.84~2.23 | 1.61 | 0.33 | 20.38 |
移栽后61 d | 45 | 1.03~2.64 | 1.80 | 0.40 | 21.97 |
移栽后75 d | 45 | 0.87~2.95 | 2.05 | 0.52 | 25.26 |
移栽后89 d | 45 | 0.79~2.46 | 1.60 | 0.45 | 28.43 |
移栽后109 d | 45 | 0.52~1.49 | 0.88 | 0.20 | 22.13 |
全生育期 | 270 | 0.52~2.95 | 1.58 | 0.52 | 33.22 |
Table 4
Correlation coefficients between leaf chlorophyll content( LCC) in flue-cured tobacco and vegetation index at different growth stages
植被指数 | 移栽后32 d | 移栽后48 d | 移栽后61 d | 移栽后75 d | 移栽后89 d | 移栽后109 d | 全生育期 |
---|---|---|---|---|---|---|---|
NIR | 0.587** | 0.525** | 0.698** | 0.902** | 0.822** | 0.250 | 0.415** |
GNDVI | 0.672** | 0.713** | 0.798** | 0.848** | 0.854** | 0.184 | 0.426** |
NDRE | 0.771** | 0.675** | 0.821** | 0.883** | 0.765** | 0.249 | 0.731** |
ND550 | 0.623** | 0.734** | 0.783** | 0.831** | 0.852** | 0.179 | 0.426** |
mSRI | 0.677** | 0.744** | 0.768** | 0.835** | 0.808** | 0.229 | 0.708** |
PPR | 0.068 | -0.032 | -0.565** | -0.616** | -0.757** | -0.624** | -0.323** |
REP | 0.587** | 0.530** | 0.746** | 0.876** | 0.849** | 0.306* | 0.664** |
SR | 0.698** | 0.782** | 0.858** | 0.852** | 0.808** | 0.183 | 0.601** |
RNDVI | 0.698** | 0.792** | 0.864** | 0.840** | 0.827** | 0.212 | 0.530** |
VOG | 0.738** | 0.673** | 0.775** | 0.869** | 0.694** | 0.221 | 0.771** |
NDCI | 0.482** | 0.649** | 0.697** | 0.742** | 0.847** | 0.069 | 0.273** |
CIre | 0.767** | 0.674** | 0.817** | 0.896** | 0.754** | 0.219 | 0.729** |
CIgreen | 0.655** | 0.725** | 0.821** | 0.864** | 0.830** | 0.157 | 0.490** |
mND705 | 0.685** | 0.799** | 0.870** | 0.846** | 0.821** | 0.170 | 0.460** |
TCARI | -0.249 | 0.087 | -0.675** | -0.709** | -0.873** | -0.473** | -0.620** |
TCARI/OSAVI | -0.590** | -0.311* | -0.759** | -0.761** | -0.877** | -0.404** | -0.630** |
OSAVI | 0.526** | 0.751** | 0.467** | 0.387** | 0.413** | -0.262 | 0.161** |
MTCI | 0.691** | 0.657** | 0.806** | 0.866** | 0.810** | 0.259 | 0.682** |
Table 5
Selected bands of new combination of spectral indices and LCC correlation coefficients at different growth stages
移栽天数 | 光谱指数 | 相关系数 | 移栽天数 | 光谱指数 | 相关系数 |
---|---|---|---|---|---|
32 | DSI(R840,R719) | 0.754** | 89 | DSI(R587,R579) | 0.892** |
RSI(R797,R719) | 0.792** | RSI(R946,R529) | 0.870** | ||
NDSI(R797,R719) | 0.795** | NDSI(R946,R529) | 0.881** | ||
48 | DSI(R766,R732) | 0.725** | 109 | DSI(R504,R710) | 0.521** |
RSI(R719,R697) | 0.797** | RSI(R455,R541) | 0.668** | ||
NDSI(R727,R697) | 0.805** | NDSI(R455,R541) | 0.669** | ||
61 | DSI(R500,R592) | 0.822** | 全生育期 | DSI(R492,R617) | 0.726** |
RSI(R736,R706) | 0.878** | RSI(R736,R723) | 0.807** | ||
NDSI(R736,R706) | 0.878** | NDSI(R736,R723) | 0.806** | ||
75 | DSI(R784,R749) | 0.835** | |||
RSI(R775,R745) | 0.912** | ||||
NDSI(R775,R745) | 0.912** |
Table 6
Prediction models and validation of flue-cured tobacco LCC with single spectral parameter at different growth stages
移栽天数 | 光谱参数 | 回归方程 | 建模集 | 验证集 | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
32 | NDRE | y=10.528x-0.968 (25) | 0.606 | 0.234 | 0.527 | 0.198 |
NDSI(R797,R719) | y=10.912x-1.035 (26) | 0.617 | 0.231 | 0.662 | 0.167 | |
48 | mND705 | y=8.592x-1.811 (27) | 0.632 | 0.193 | 0.701 | 0.174 |
NDSI(R727,R697) | y=9.709x-3.949 (28) | 0.646 | 0.189 | 0.738 | 0.163 | |
61 | mND705 | y=12.592x-3.554 (29) | 0.769 | 0.218 | 0.707 | 0.243 |
NDSI(R736,R706) | y=12.001x-3.651 (30) | 0.774 | 0.216 | 0.749 | 0.225 | |
75 | NIR | y=17.635x-17.935 (31) | 0.814 | 0.230 | 0.829 | 0.253 |
NDSI(R775,R745) | y=63.199x-0.391 (32) | 0.822 | 0.226 | 0.862 | 0.227 | |
89 | TCARI/OSAVI | y=-5.264x+3.223 (33) | 0.784 | 0.208 | 0.772 | 0.207 |
DSI(R587,R579) | y=126.691x+4.004 (34) | 0.772 | 0.214 | 0.847 | 0.169 | |
109 | PPR | y=-5.501x+4.504 (35) | 0.413 | 0.139 | 0.392 | 0.169 |
RSI(R455,R541) | y=7.509x-0.890 (36) | 0.473 | 0.131 | 0.462 | 0.149 | |
全生育期 | VOG | y=3.124x-3.588 (37) | 0.602 | 0.348 | 0.588 | 0.349 |
RSI(R736,R723) | y=7.026x-7.873 (38) | 0.636 | 0.333 | 0.686 | 0.304 |
Table 7
LCC prediction models of flue-cured tobacco with multiple spectral parameters at different growth stages
移栽天数 | 模型 | 建模集 | 验证集 | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
32 | LCC-MLR | 0.673 | 0.254 | 0.679 | 0.215 |
LCC-PLSR | 0.590 | 0.247 | 0.626 | 0.162 | |
LCC-SVR | 0.647 | 0.232 | 0.569 | 0.176 | |
LCC-RFR | 0.733 | 0.186 | 0.660 | 0.210 | |
48 | LCC-MLR | 0.680 | 0.240 | 0.742 | 0.148 |
LCC-PLSR | 0.607 | 0.217 | 0.621 | 0.192 | |
LCC-SVR | 0.702 | 0.680 | 0.691 | 0.164 | |
LCC-RFR | 0.744 | 0.165 | 0.757 | 0.173 | |
61 | LCC-MLR | 0.812 | 0.232 | 0.820 | 0.264 |
LCC-PLSR | 0.746 | 0.238 | 0.750 | 0.227 | |
LCC-SVR | 0.830 | 0.197 | 0.736 | 0.228 | |
LCC-RFR | 0.866 | 0.176 | 0.832 | 0.185 | |
75 | LCC-MLR | 0.893 | 0.214 | 0.804 | 0.289 |
LCC-PLSR | 0.766 | 0.293 | 0.807 | 0.204 | |
LCC-SVR | 0.856 | 0.204 | 0.824 | 0.269 | |
LCC-RFR | 0.891 | 0.205 | 0.919 | 0.146 | |
89 | LCC-MLR | 0.850 | 0.217 | 0.781 | 0.224 |
LCC-PLSR | 0.765 | 0.221 | 0.799 | 0.224 | |
LCC-SVR | 0.790 | 0.218 | 0.810 | 0.184 | |
LCC-RFR | 0.846 | 0.163 | 0.842 | 0.246 | |
109 | LCC-MLR | 0.631 | 0.134 | 0.511 | 0.181 |
LCC-PLSR | 0.484 | 0.119 | 0.429 | 0.192 | |
LCC-SVR | 0.513 | 0.117 | 0.606 | 0.168 | |
LCC-RFR | 0.678 | 0.120 | 0.580 | 0.131 | |
全生育期 | LCC-MLR | 0.718 | 0.303 | 0.741 | 0.274 |
LCC-PLSR | 0.720 | 0.292 | 0.712 | 0.291 | |
LCC-SVR | 0.731 | 0.287 | 0.742 | 0.276 | |
LCC-RFR | 0.854 | 0.206 | 0.802 | 0.264 |
1 | WANG L, CHEN S S, LI D, et al. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery[J]. Remote sensing, 2021, 13(15): ID 2956. |
2 | 冯海宽, 陶惠林, 赵钰, 等. 利用无人机高光谱估算冬小麦叶绿素含量[J]. 光谱学与光谱分析, 2022, 42(11): 3575-3580. |
FENG H K, TAO H L, ZHAO Y, et al. Estimation of chlorophyll content in winter wheat based on UAV hyperspectral[J]. Spectroscopy and spectral analysis, 2022, 42(11): 3575-3580. | |
3 | QIAO L, TANG W J, GAO D H, et al. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages[J]. Computers and electronics in agriculture, 2022, 196: ID 106775. |
4 | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293. |
TIAN M L, BAN S T, CHANG Q R, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese society for agricultural machinery, 2016, 47(11): 285-293. | |
5 | 尹航, 李斐, 杨海波, 等. 基于无人机高光谱影像的马铃薯叶绿素含量估测[J]. 植物营养与肥料学报, 2021, 27(12): 2184-2195. |
YIN H, LI F, YANG H B, et al. Estimation of canopy chlorophyll in potato based on UAV hyperspectral images[J]. Journal of plant nutrition and fertilizers, 2021, 27(12): 2184-2195. | |
6 | JIA F F, LIU G S, LIU D S, et al. Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance[J]. Field crops research, 2013, 150: 108-114. |
7 | 陈晓凯, 李粉玲, 王玉娜, 等. 无人机高光谱遥感估算冬小麦叶面积指数[J]. 农业工程学报, 2020, 36(22): 40-49. |
CHEN X K, LI F L, WANG Y N, et al. Estimation of winter wheat leaf area index based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 40-49. | |
8 | 王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22): 31-39. |
WANG Y N, LI F L, WANG W D, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 31-39. | |
9 | YANG H B, LI F, WANG W, et al. Estimating above-ground biomass of potato using random forest and optimized hyperspectral indices[J]. Remote sensing, 2021, 13(12): ID 2339. |
10 | 萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2005. |
XIAO L T, WANG S G. Experimental technology of plant physiology[M]. Beijing: China Agriculture Press, 2005. | |
11 | LIU H Y, ZHU H C, WANG P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data[J]. International journal of remote sensing, 2017, 38(8-10): 2117-2134. |
12 | 付波霖, 邓良超, 张丽, 等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报, 2022, 26(6): 1182-1205. |
FU B L, DENG L C, ZHANG L, et al. Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm[J]. National remote sensing bulletin, 2022, 26(6): 1182-1205. | |
13 | ZHANG Y, XIA C Z, ZHANG X Y, et al. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images[J]. Ecological indicators, 2021, 129: ID 107985. |
14 | METTERNICHT G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International journal of remote sensing, 2003, 24(14): 2855-2877. |
15 | GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation[J]. Journal of plant physiology, 1994, 143(3): 286-292. |
16 | MISTELE B, SCHMIDHALTER U. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat[J]. Agronomy journal, 2010, 102(2): 499-506. |
17 | RANJAN R, CHOPRA U K, SAHOO R N, et al. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices[J]. International journal of remote sensing, 2012, 33(20): 6342-6360. |
18 | GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology, 2003, 160(3): 271-282. |
19 | RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote sensing of environment, 1996, 55(2): 95-107. |
20 | BARNES E, CLARKE T, RICHARDS S E, et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data[C]// Proceedings of the 5th International Conference on Precision Agriculture. Madison, USA: American Society of Agronomy, 2000. |
21 | SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote sensing of environment, 2002, 81(2/3): 337-354. |
22 | VOGELMANN J E, ROCK B N, MOSS D M. Red edge spectral measurements from sugar maple leaves[J]. International journal of remote sensing, 1993, 14(8): 1563-1575. |
23 | CLEVERS JAN G P W. Imaging spectrometry in agriculture - plant vitality and yield indicators[M]// Eurocourses: remote sensing. Dordrecht: Springer Netherlands, 2007: 193-219. |
24 | GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sensing of environment, 1996, 58(3): 289-298. |
25 | DATT B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves[J]. Journal of plant physiology, 1999, 154(1): 30-36. |
26 | HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote sensing of environment, 2002, 81(2/3): 416-426. |
27 | GITELSON A A, MERZLYAK M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in space research, 1998, 22(5): 689-692. |
28 | DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International journal of remote sensing, 2004, 25(23): 5403-5413. |
29 | 陈倩, 常庆瑞, 郭松, 等. 基于红边特性和连续小波变换的冬小麦叶绿素含量估算[J]. 麦类作物学报, 2022, 42(7): 883-891. |
CHEN Q, CHANG Q R, GUO S, et al. Estimation of chlorophyll content in winter wheat based on red edge characteristics and continuous wavelet transform[J]. Journal of triticeae crops, 2022, 42(7): 883-891. | |
30 | LI C C, CHEN P, MA C Y, et al. Estimation of potato chlorophyll content using composite hyperspectral index parameters collected by an unmanned aerial vehicle[J]. International journal of remote sensing, 2020, 41(21): 8176-8197. |
31 | TAO H L, FENG H K, XU L J, et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors, 2020, 20(5): ID 1296. |
32 | 班松涛, 田明璐, 常庆瑞, 等. 基于无人机高光谱影像的水稻叶片磷素含量估算[J]. 农业机械学报, 2021, 52(8): 163-171. |
BAN S T, TIAN M L, CHANG Q R, et al. Estimation of rice leaf phosphorus content using UAV-based hyperspectral images[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(8): 163-171. | |
33 | CHEN X K, LI F L, SHI B T, et al. Estimation of winter wheat canopy chlorophyll content based on canopy spectral transformation and machine learning method[J]. Agronomy, 2023, 13(3): ID 783. |
34 | PATEL M K, RYU D, WESTERN A W, et al. Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop[J]. Computers and electronics in agriculture, 2021, 182: ID 106000. |
[1] | FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data [J]. Smart Agriculture, 2022, 4(4): 61-73. |
[2] | XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen. Corn and Soybean Futures Price Intelligent Forecasting Based on Deep Learning [J]. Smart Agriculture, 2022, 4(4): 156-163. |
[3] | ZHANG Sha, LIU Muhua, CHEN Jinyin, ZHAO Jinhui. Rapid Detection of Imazalil Residues in Navel Orange Peel Using Surface-Enhanced Raman Spectroscopy [J]. Smart Agriculture, 2021, 3(4): 42-52. |
[4] | SHU Meiyan, CHEN Xiangyang, WANG Xiqing, MA Yuntao. Estimation of Maize Leaf Area Index and Aboveground Biomass Based on Hyperspectral Data [J]. Smart Agriculture, 2021, 3(1): 29-39. |
[5] | SHAO Guomin, WANG Yajie, HAN Wenting. Estimation Method of Leaf Area Index for Summer Maize Using UAV-Based Multispectral Remote Sensing [J]. Smart Agriculture, 2020, 2(3): 118-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||