1 |
孙耀辉. 牛场繁殖数据统计与繁殖管理分析[J]. 黑龙江动物繁殖, 2022, 30(2): 42-46.
|
|
SUN Y H. Statistical analysis of reproductive data and reproductive management in cattle farms[J]. Heilongjiang journal of animal reproduction, 2022, 30(2): 42-46.
|
2 |
REITH S, HOY S. Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle[J]. Animal, 2018, 12(2): 398-407.
|
3 |
MOTTRAM T. Animal board invited review: Precision livestock farming for dairy cows with a focus on oestrus detection[J]. Animal, 2016, 10(10): 1575-1584.
|
4 |
刘镜, 何光中. 肉牛繁殖力低下的原因及其提高措施[J]. 安徽农业科学, 2012, 40(36): 17628-17629, 17631.
|
|
LIU J, HE G Z. Causes of low fertility in beef cattle and measures to improve it[J]. Journal of Anhui agricultural sciences, 2012, 40(36): 17628-17629, 17631.
|
5 |
周正义, 田莉, 田宏志, 等. 母牛安静发情鉴定技术概况及影响因素分析[J]. 畜牧兽医学报, 2021, 52(4): 862-871.
|
|
ZHOU Z Y, TIAN L, TIAN H Z, et al. Analysis of identification technology and influence factors on silent estrus of cows[J]. Acta veterinaria et zootechnica sinica, 2021, 52(4): 862-871.
|
6 |
朱奎新, 耿明杰, 高庆文. 浅谈母牛的异常发情[J]. 黑龙江动物繁殖, 1997, 5(3): 38-39.
|
|
ZHU K X, GENG M J, GAO Q W. Introduction to abnormal estrus in cows[J]. Heilongjiang journal of animal reproduction, 1997, 5(3): 38-39.
|
7 |
汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20): 197-209.
|
|
WANG K Y, ZHAO X Y, HE Y. Review on noninvasive monitoring technology of poultry behavior and physiological information[J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(20): 197-209.
|
8 |
何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244.
|
|
HE D J, LIU D, ZHAO K X. Review of perceiving animal information and behavior in precision livestock farming[J]. Transactions of the Chinese society for agricultural machinery, 2016, 47(5): 231-244.
|
9 |
刘继芳, 韩书庆, 齐秀丽. 中国信息化畜禽养殖技术应用现状与展望[J]. 中国乳业, 2021(12): 47-52.
|
|
LIU J F, HAN S Q, QI X L. Application progress and prospects of the livestock and poultry informatized breeding technology in China[J]. China dairy, 2021(12): 47-52.
|
10 |
MIČIAKOVÁ M, STRAPÁK P, SZENCZIOVÁ I, et al. Several methods of estrus detection in cattle dams: A review[J]. Acta universitatis agriculturae et silviculturae mendelianae brunensis, 2018, 66(2): 619-625.
|
11 |
宗哲英, 王帅, 苏力德, 等. 奶牛发情行为的监测研究现状及进展[J]. 畜牧与兽医, 2018, 50(2): 147-150.
|
|
ZONG Z Y, WANG S, SU L D, et al. A review of research on monitoring the oestrus behavior of dairy cows[J]. Animal husbandry & veterinary medicine, 2018, 50(2): 147-150.
|
12 |
王祯, 宗哲英, 王海超, 等. 奶牛发情数字化检测方法研究现状与发展[J]. 中国饲料, 2021(21): 134-138.
|
|
WANG Z, ZONG Z Y, WANG H C, et al. Research status and development of digital detection methods for cow estrus[J]. China feed, 2021(21): 134-138.
|
13 |
郭冠华, 张建春, 董智豪, 等. 躯体不同部位活动量表征母牛发情的研究进展[J]. 中国畜牧杂志, 2022, 58(7): 15-21.
|
|
GUO G H, ZHANG J C, DONG Z H, et al. Research progress on the activity of different parts of body to characterize the estrus of cows[J]. Chinese journal of animal science, 2022, 58(7): 15-21.
|
14 |
张春梅, 席丽, 李志强, 等. 奶牛的发情鉴定方法比较[J]. 当代畜禽养殖业, 2019(1): 4-7.
|
|
ZHANG C M, XI L, LI Z Q, et al. Comparison of methods for identifying estrus in dairy cows[J]. Modern animal husbandry, 2019(1): 4-7.
|
15 |
李小俊, 王振玲, 陈晓丽, 等. 奶牛体温变化规律及繁殖应用研究进展[J]. 畜牧兽医学报, 2016, 47(12): 2331-2341.
|
|
LI X J, WANG Z L, CHEN X L, et al. Study progress on the rule of body temperature and its application in reproduction of dairy cattle[J]. Chinese journal of animal and veterinary sciences, 2016, 47(12): 2331-2341.
|
16 |
REDDEN K D, KENNEDY A D, INGALLS J R, et al. Detection of estrus by radiotelemetric monitoring of vaginal and ear skin temperature and pedometer measurements of activity[J]. Journal of dairy science, 1993, 76(3): 713-721.
|
17 |
KYLE B L, KENNEDY A D, SMALL J A. Measurement of vaginal temperature by radiotelemetry for the prediction of estrus in beef cows[J]. Theriogenology, 1998, 49(8): 1437-1449.
|
18 |
REITH S, HOY S. Relationship between daily rumination time and estrus of dairy cows[J]. Journal of dairy science, 2012, 95(11): 6416-6420.
|
19 |
REITH S, HOY S. Automatic monitoring of rumination time for oestrus detection in dairy cattle[C]// International Conference of Agricultural Engineering - CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life. Valencia, Spain: CIGR-EurAgEng. 2012.
|
20 |
李蓝祁, 刘江静, 陈晓丽, 等. 奶牛发情期活动量变化规律研究[J]. 畜牧兽医学报, 2018, 49(7): 1387-1393.
|
|
LI L Q, LIU J J, CHEN X L, et al. Study on the activity alteration of dairy cow during estrus[J]. Chinese journal of animal and veterinary sciences, 2018, 49(7): 1387-1393.
|
21 |
SCHILKOWSKY E M, GRANADOS G E, SITKO E M, et al. Evaluation and characterization of estrus alerts and behavioral parameters generated by an ear-attached accelerometer-based system for automated detection of estrus[J]. Journal of dairy science, 2021, 104(5): 6222-6237.
|
22 |
TOAN T V, NISHIKAWA R, THANH L T, et al. Cow estrus detection with low-frequency accelerometer sensor by unsupervised learning[C]// Proceedings of the Tenth International Symposium on Information and Communication Technology - SoICT 2019. New York, USA: ACM, 2019: 342-349.
|
23 |
ARCIDIACONO C, PORTO S M C, MANCINO M, et al. A threshold-based algorithm for the development of inertial sensor-based systems to perform real-time cow step counting in free-stall barns[J]. Biosystems engineering, 2017, 153: 99-109.
|
24 |
LUKAS J M, RENEAU J K, LINN J G. Water intake and dry matter intake changes as a feeding management tool and indicator of health and estrus status in dairy cows[J]. Journal of dairy science, 2008, 91(9): 3385-3394.
|
25 |
HALLI K, KOCH C, ROMBERG F J, et al. Investigations on automatically measured feed intake amount in dairy cows during the oestrus period[J]. Archives animal breeding, 2015, 58(1): 93-98.
|
26 |
RÖTTGEN V, BECKER F, TUCHSCHERER A, et al. Vocalization as an indicator of estrus climax in Holstein heifers during natural estrus and superovulation[J]. Journal of dairy science, 2018, 101(3): 2383-2394.
|
27 |
RÖTTGEN V, SCHÖN P C, BECKER F, et al. Automatic recording of individual oestrus vocalisation in group-housed dairy cattle: Development of a cattle call monitor[J]. Animal, 2020, 14(1): 198-205.
|
28 |
LEE J, ZUO S S, CHUNG Y, et al. Formant-based acoustic features for cow's estrus detection in audio surveillance system[C]// 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway, New Jersey, USA: IEEE, 2014: 236-240.
|
29 |
王少华, 何东健, 刘冬. 基于机器视觉的奶牛发情行为自动识别方法[J]. 农业机械学报, 2020, 51(4): 241-249.
|
|
WANG S H, HE D J, LIU D. Automatic recognition method of dairy cow estrus behavior based on machine vision[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(4): 241-249.
|
30 |
刘忠超, 何东健. 基于卷积神经网络的奶牛发情行为识别方法[J]. 农业机械学报, 2019, 50(7): 186-193.
|
|
LIU Z C, HE D J. Recognition method of cow estrus behavior based on convolutional neural network[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(7): 186-193.
|
31 |
VAN EERDENBURG F J, LOEFFLER H S, VAN VLIET J H. Detection of oestrus in dairy cows: A new approach to an old problem[J]. The veterinary quarterly, 1996, 18(2): 52-54.
|
32 |
CHANG A Z, FOGARTY E S, MORAES L E, et al. Detection of rumination in cattle using an accelerometer ear-tag: A comparison of analytical methods and individual animal and generic models[J]. Computers and electronics in agriculture, 2022, 192: ID 106595.
|
33 |
YOSHIHARA Y, OYA K. Characterization and assessment of vocalization responses of cows to different physiological states[J]. Journal of applied animal research, 2021, 49(1): 347-351.
|
34 |
NOE S M, ZIN T T, TIN P, et al. Automatic detection and tracking of mounting behavior in cattle using a deep learning-based instance segmentation model[J]. International journal of innovativecomputing, information and control, 2022, 18: 211-220.
|
35 |
WANG J, BELL M, LIU X H, et al. Machine-learning techniques can enhance dairy cow estrus detection using location and acceleration data[J]. Animals, 2020, 10(7): ID 1160.
|
36 |
BENAISSA S, TUYTTENS F A M, PLETS D, et al. Calving and estrus detection in dairy cattle using a combination of indoor localization and accelerometer sensors[J]. Computers and electronics in agriculture, 2020, 168: ID 105153.
|
37 |
CODL R, DUCHÁČEK J, VACEK M, et al. Relationship between daily activities duration and oestrus in dairy cows over the year[J]. Acta veterinaria Brno, 2022, 91(1): 11-16.
|
38 |
康熙, 刘刚, 初梦苑, 等. 基于计算机视觉的奶牛生理参数监测与疾病诊断研究进展及挑战[J]. 智慧农业(中英文), 2022, 4(2): 1-18.
|
|
KANG X, LIU G, CHU M Y, et al. Advances and challenges in physiological parameters monitoring and diseases diagnosing of dairy cows based on computer vision[J]. Smart agriculture, 2022, 4(2): 1-18.
|
39 |
ANDERSSON L M, OKADA H, MIURA R, et al. Wearable wireless estrus detection sensor for cows[J]. Computers and electronics in agriculture, 2016, 127: 101-108.
|
40 |
HIGAKI S, DARHAN H, SUZUKI C, et al. An attempt at estrus detection in cattle by continuous measurements of ventral tail base surface temperature with supervised machine learning[J]. The journal of reproduction and development, 2021, 67(1): 67-71.
|
41 |
TALUKDER S, KERRISK K L, INGENHOFF L, et al. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system[J]. Theriogenology, 2014, 81(7): 925-935.
|
42 |
MIURA R, YOSHIOKA K, MIYAMOTO T, et al. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle[J]. Animal reproduction science, 2017, 180: 50-57.
|
43 |
WANG Z, WANG S, WANG C G, et al. A non-contact cow estrus monitoring method based on the thermal infrared images of cows[J]. Agriculture, 2023, 13(2): ID 385.
|
44 |
MINEGISHI K, HEINS B J, PEREIRA G M. Peri-estrus activity and rumination time and its application to estrus prediction: Evidence from dairy herds under organic grazing and low-input conventional production[J]. Livestock science, 2019, 221: 144-154.
|
45 |
邵大富, 王封霞, 李胜利, 等. 发情期间奶牛反刍行为和产奶量的变化规律[C]// 第七届中国奶业大会. 青岛, 中国: 《中国奶牛》编辑部, 2016: 253-256.
|
|
SHAO D F, WANG F X, LI S L, et al.The changing patterns of ruminant behavior and milk yield in dairy cows during estrus[C]// The 7th China Dairy Industry Conference. Qingdao, China: Editorial Department of China Dairy Cattle, 2016: 253-256.
|
46 |
SCHWEINZER V, GUSTERER E, KANZ P, et al. Comparison of behavioral patterns of dairy cows with natural estrus and induced ovulation detected by an ear-tag based accelerometer[J]. Theriogenology, 2020, 157: 33-41.
|
47 |
WANG J, HE Z T, ZHENG G Q, et al. Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data[J]. PLoS One, 2018, 13(9): ID e0203546.
|
48 |
SHAHRIAR M S, SMITH D, RAHMAN A, et al. Heat event detection in dairy cows with collar sensors: An unsupervised machine learning approach[C]// 2015 IEEE SENSORS. Piscataway, New Jersey, USA: IEEE, 2015: 1-4.
|
49 |
VALENZA A, GIORDANO J O, LOPES G, et al. Assessment of an accelerometer system for detection of estrus and treatment with gonadotropin-releasing hormone at the time of insemination in lactating dairy cows[J]. Journal of dairy science, 2012, 95(12): 7115-7127.
|
50 |
MAYO L M, SILVIA W J, RAY D L, et al. Automated estrous detection using multiple commercial precision dairy monitoring technologies in synchronized dairy cows[J]. Journal of dairy science, 2019, 102(3): 2645-2656.
|
51 |
SAULS J A, VOELZ B E, HILL S L, et al. Increasing estrus expression in the lactating dairy cow 1[J]. Journal of dairy science, 2017, 100(1): 807-820.
|
52 |
CHANVALLON A, COYRAL-CASTEL S, GATIEN J, et al. Comparison of three devices for the automated detection of estrus in dairy cows[J]. Theriogenology, 2014, 82(5): 734-741.
|
53 |
DOLECHECK K A, SILVIA W J, HEERSCHE G, et al. Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies[J]. Journal of dairy science, 2015, 98(12): 8723-8731.
|
54 |
蒋晓新, 刘炜, 魏星远, 等. 运用计步器鉴定泌乳盛期荷斯坦奶牛的发情效果研究[J]. 安徽农业科学, 2013, 41(15): 6728-6729, 6732.
|
|
JIANG X X, LIU W, WEI X Y, et al. Study on the effects of identifying the estrus of Holstein cows during peak lactation by using pedometer[J]. Journal of Anhui agricultural sciences, 2013, 41(15): 6728-6729, 6732.
|
55 |
寇红祥, 李蓝祁, 王振玲, 等. 牛发情期活动量与阴道黏液电阻值变化规律的研究[J]. 畜牧兽医学报, 2017, 48(7): 1221-1228.
|
|
KOU H X, LI L Q, WANG Z L, et al. Study on the regulations of activity and vaginal electrical resistance of cattle during the estrous cycle[J]. Chinese journal of animal and veterinary sciences, 2017, 48(7): 1221-1228.
|
56 |
曹学浩, 黄善琦, 马树刚, 等. 活动量监测技术的研究及其在奶牛繁殖管理中的应用[J]. 中国奶牛, 2013(8): 37-40.
|
|
CAO X H, HUANG S Q, MA S G, et al. Applications of activity monitoring technology in dairy cattle breeding management[J]. China dairy cattle, 2013(8): 37-40.
|
57 |
周正义. 肉牛发情期尾部活动量变化规律与预同期处理妊娠率分析[D]. 太谷: 山西农业大学, 2021.
|
|
ZHOU Z Y. Analysis on the variation of tail activity during estrus and the pregnancy rate of pre-synchronization treatment in beef cattle[D]. Taigu: Shanxi Agricultural University, 2021.
|
58 |
ZEBARI H M, RUTTER S M, BLEACH E C L. Characterizing changes in activity and feeding behaviour of lactating dairy cows during behavioural and silent oestrus[J]. Applied animal behaviour science, 2018, 206: 12-17.
|
59 |
孙保贵, 郭予伟, 陈茂学, 等. 奶牛运动量辅助发情诊断参数的研究[J]. 中国畜牧杂志, 2015, 51(13): 71-75.
|
|
SUN B G, GUO Y W, CHEN M X, et al. Study on estrus detection parameter based on activity record in lactating cows[J]. Chinese journal of animal science, 2015, 51(13): 71-75.
|
60 |
李尚汝, 张鑫玥, 孙雨坤, 等. 奶牛个体釆食量监测系统研究进展[J]. 动物营养学报, 2020, 32(11): 5075-5080.
|
|
LI S R, ZHANG X Y, SUN Y K, et al. Research progress of monitoring system for individual feed intake of dairy cows[J]. Chinese journal of animal nutrition, 2020, 32(11): 5075-5080.
|
61 |
张永根. 奶牛采食行为的智能化监测方法及其应用研究进展[J]. 饲料工业, 2020, 41(9): 1-6.
|
|
ZHANG Y G. Research progress on intelligent monitoring methods for monitoring feeding behavior of dairy cows[J]. Feed industry, 2020, 41(9): 1-6.
|
62 |
周雅婷, 许童羽, 陈春玲, 等. 基于神经网络算法的肉牛采食行为检测方法[J]. 沈阳农业大学学报, 2016, 47(6): 752-757.
|
|
ZHOU Y T, XU T Y, CHEN C L, et al. Detection method of beef cattle feeding behavior based on neural network algorithm[J]. Journal of Shenyang agricultural university, 2016, 47(6): 752-757.
|
63 |
PAHL C, HARTUNG E, MAHLKOW-NERGE K, et al. Feeding characteristics and rumination time of dairy cows around estrus[J]. Journal of dairy science, 2015, 98(1): 148-154.
|
64 |
CAIRO F C, PEREIRA L G R, CAMPOS M M, et al. Applying machine learning techniques on feeding behavior data for early estrus detection in dairy heifers[J]. Computers and electronics in agriculture, 2020, 179: ID 105855.
|
65 |
张曦宇, 宣传忠, 武佩, 等. 基于声信号的畜禽行为信息监测研究进展[J]. 黑龙江畜牧兽医, 2017(11): 63-68.
|
|
ZHANG X Y, XUAN C Z, WU P, et al. Review on monitoring technology for behaviors of livestock and poultry based on acoustic signals[J]. Heilongjiang animal science and veterinary medicine, 2017(11): 63-68.
|
66 |
SCHÖN P C, HÄMEL K, PUPPE B, et al. Altered vocalization rate during the estrous cycle in dairy cattle[J]. Journal of dairy science, 2007, 90(1): 202-206.
|
67 |
YEON S C, JEON J H, HOUPT K A, et al. Acoustic features of vocalizations of Korean native cows (Bos Taurus coreanea) in two different conditions[J]. Applied animal behaviour science, 2006, 101(1/2): 1-9.
|
68 |
WANG J, CHEN H R, WANG J P, et al. Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag[J]. animal, 2023, 17(6): ID 100811.
|
69 |
闫丽, 邵庆, 吴晓梅, 等. 基于偏度聚类的哺乳期母猪声音特征提取与分类识别[J]. 农业机械学报, 2016, 47(5): 300-306.
|
|
YAN L, SHAO Q, WU X M, et al. Feature extraction and classification based on skewness clustering algorithm for lactating sow[J]. Transactions of the Chinese society for agricultural machinery, 2016, 47(5): 300-306.
|
70 |
姚绪新. 宁夏贺兰山岩羊发情期行为与其社群状态关系[D]. 哈尔滨: 东北林业大学, 2018.
|
|
YAO X X. The relationship between the behavior and the social status of blue sheep (pesudois nayaur) in Helan mountains[D]. Harbin: Northeast Forestry University, 2018.
|
71 |
黄福任, 贾博, 徐洪东, 等. 母羊发情声音数字化识别模型的建立[J]. 中国畜牧杂志, 2019, 55(12): 8-12.
|
|
HUANG F R, JIA B, XU H D, et al. Establishment of digital recognition model for ewe estrus sound[J]. Chinese journal of animal science, 2019, 55(12): 8-12.
|
72 |
WANG Z, HUA Z X, WEN Y C, et al. E-YOLO: Recognition of estrus cow based on improved YOLOv8n model[J]. Expert systems with applications, 2024, 238: ID 122212.
|
73 |
谢忠红, 刘悦怡, 宋子阳, 等. 基于时序运动特征的奶牛爬跨行为识别研究[J]. 南京农业大学学报, 2021, 44(1): 194-200.
|
|
XIE Z H, LIU Y Y, SONG Z Y, et al. Research on recognition of crawling behavior of cows based on temporal motion features[J]. Journal of Nanjing agricultural university, 2021, 44(1): 194-200.
|
74 |
GU J Q, WANG Z H, GAO R H, et al. Cow behavior recognition based on image analysis and activities[J]. International journal of agricultural and biological engineering, 2017, 10(3): 165-174.
|
75 |
YANG C J, LIN Y H, PENG S Y. Develop a video monitoring system for dairy estrus detection at night[C]// 2017 International Conference on Applied System Innovation (ICASI). Piscataway, New Jersey, USA: IEEE, 2017: 1900-1903.
|
76 |
蔡兆晖, 林学杰. 基于机器视觉的奶牛发情行为视频监测算法研究[J]. 当代畜禽养殖业, 2021(3): 28-30.
|
|
CAI Z H, LIN X J. Research on a video monitoring algorithm for cow estrus behavior based on machine vision[J]. Modern animal husbandry, 2021(3): 28-30.
|
77 |
CHOWDHURY S, VERMA B, ROBERTS J, et al. Deep learning based computer vision technique for automatic heat detection in cows[C]// 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Piscataway, New Jersey, USA: IEEE, 2016.
|
78 |
WANG R, GAO R H, LI Q F, et al. A lightweight cow mounting behavior recognition system based on improved YOLOv5s[J]. Scientific reports, 2023, 13(1): ID 17418.
|
79 |
LODKAEW T, PASUPA K, LOO C K. CowXNet: An automated cow estrus detection system[J]. Expert systems with applications, 2023, 211: ID 118550.
|
80 |
ARıKAN İ, AYAV T, SEÇKIN A Ç, et al. Estrus detection and dairy cow identification with cascade deep learning for augmented reality-ready livestock farming[J]. Sensors, 2023, 23(24): ID 9795.
|
81 |
WANG R, BAI Q, GAO R H, et al. Oestrus detection in dairy cows by using atrous spatial pyramid and attention mechanism[J]. Biosystems engineering, 2022, 223: 259-276.
|
82 |
田富洋, 王冉冉, 刘莫尘, 等. 基于神经网络的奶牛发情行为辨识与预测研究[J]. 农业机械学报, 2013, 44(S1): 277-281.
|
|
TIAN F Y, WANG R R, LIU M C, et al. Oestrus detection and prediction in dairy cows based on neural networks[J]. Transactions of the Chinese society for agricultural machinery, 2013, 44(S1): 277-281.
|
83 |
FAUVEL K, MASSON V, FROMONT É, et al. Towards sustainable dairy management - A machine learning enhanced method for estrus detection[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 3051-3059.
|
84 |
HIGAKI S, MIURA R, SUDA T, et al. Estrous detection by continuous measurements of vaginal temperature and conductivity with supervised machine learning in cattle[J]. Theriogenology, 2019, 123: 90-99.
|
85 |
PEREZ MARQUEZ H J, AMBROSE D J, SCHAEFER A L, et al. Evaluation of infrared thermography combined with behavioral biometrics for estrus detection in naturally cycling dairy cows[J]. Animal, 2021, 15(7): ID 100205.
|
86 |
HIGAKI S, OKADA H, SUZUKI C, et al. Estrus detection in Tie-stall housed cows through supervised machine learning using a multimodal tail-attached device[J]. Computers and electronics in agriculture, 2021, 191: ID 106513.
|
87 |
YILDIZ A K, OZGUVEN M M. Determination of estrus in cattle with artificial neural networks using mobility and environmental data[J]. Gaziosmanpasa universitesi ziraat fakultesi dergisi, 2022, 39(1):40-45.
|
88 |
KIM D, KWON W S, HA J, et al. Increased accuracy of estrus prediction using ruminoreticular biocapsule sensors in Hanwoo (Bos Taurus coreanae) cows[J]. Journal of animal science and technology, 2023, 65(4): 759-766.
|
89 |
MORTAZAVIS N, MOHTASEBIS S, SOLTANI M,et al. Feasibility study of dairy cow estrus detection based on milk using electronic nose system[J]. Journal of researches in mechanics of agricultural machinery, 2023, 12(1): fa83-fa94.
|
90 |
CHEON S N, PARK G W, PARK K H, et al. Peri-estrus activity and mounting behavior and its application to estrus detection in Hanwoo (Korea Native Cattle)[J]. Journal of animal science and technology, 2023, 65(4): 748-758.
|
91 |
ATREY P K, HOSSAIN M A, SADDIK AEL, et al. Multimodal fusion for multimedia analysis: A survey[J]. Multimedia systems, 2010, 16(6): 345-379.
|
92 |
RAMACHANDRAM D, TAYLOR G W. Deep multimodal learning: A survey on recent advances and trends[J]. IEEE signal processing magazine, 2017, 34(6): 96-108.
|
93 |
BALTRUSAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(2): 423-443.
|