Welcome to Smart Agriculture 中文

Smart Agriculture

   

Advances, Problems and Challenges of Precise Estrus Perception and Intelligent Identification Technology for Cows

ZHANG Zhiyong1,2, CAO Shanshan2, KONG Fantao3, LIU Jifang2, SUN Wei2()   

  1. 1. Computer and Information Engineering Institute, Xinjiang Agricultural University, Urumqi 830052, China
    2. Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3. Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2024-05-13 Online:2025-01-08
  • Foundation items:
    Key Research and Development Projects of Jilin Province(20240303079NC)
  • corresponding author:
    SUN Wei, E-mail:

Abstract:

[Significance] Estrus monitoring and identification in cows is a crucial aspect of breeding management in beef and dairy cattle farming. Innovations in precise sensing and intelligent identification methods and technologies for estrus in cows are essential not only for scientific breeding, precise management, and smart breeding on a population level but also play a key supportive role in health management, productivity enhancement, and animal welfare improvement at the individual level. The aims are to provide a reference for scientific management and the study of modern production technologies in the beef and dairy cattle industry, as well as theoretical methodologies for the research and development of key technologies in precision livestock farming in China. [Progress] Based on describing the typical characteristics of normal and abnormal estrus in cows, this paper systematically categorizes and summarizes the recent research progress, development trends, and methodological approaches in estrus monitoring and identification technologies, focusing on the monitoring and diagnosis of key physiological signs and behavioral characteristics during the estrus period. Firstly, it outlines the digital monitoring technologies for three critical physiological parameters—body temperature, rumination, and activity levels—and their applications in cow estrus monitoring and identification. It analyzes the intrinsic reasons for performance bottlenecks in estrus monitoring models based on body temperature, compares the reliability issues faced by activity-based estrus monitoring, and addresses the difficulties in balancing model generalization and robustness design. Secondly, it examines the estrus sensing and identification technologies based on three typical behaviors: feeding, vocalization, and sexual desire. It highlights the latest applications of new artificial intelligence technologies, such as computer vision and deep learning, in estrus monitoring and points out the critical role of these technologies in improving the accuracy and timeliness of monitoring. Finally, it focuses on multi-factor fusion technologies for estrus perception and identification, summarizing how different researchers combine various physiological and behavioral parameters using diverse monitoring devices and algorithms to enhance accuracy in estrus monitoring. It emphasizes that multi-factor fusion methods can improve detection rates and the precision of identification results, being more reliable and applicable than single-factor methods. The importance and potential of multi-modal information fusion in enhancing monitoring accuracy and adaptability are underlined. The current shortcomings of multi-factor information fusion methods are analyzed, such as the potential impact on animal welfare from parameter acquisition methods, the singularity of model algorithms used for representing multi-factor information fusion, and inadequacies in research on multi-factor feature extraction models and estrus identification decision algorithms. [Conclusions and Prospects] From the perspectives of system practicality, stability, environmental adaptability, cost-effectiveness, and ease of operation, several key issues are discussed that need to be addressed in the further research of precise sensing and intelligent identification technologies for cow estrus within the context of high-quality development in digital livestock farming. These include improving monitoring accuracy under weak estrus conditions, overcoming technical challenges of audio extraction and voiceprint construction amidst complex background noise, enhancing the adaptability of computer vision monitoring technologies, and establishing comprehensive monitoring and identification models through multi-modal information fusion. It specifically discusses the numerous challenges posed by these issues to current technological research and explains that future research needs to focus not only on improving the timeliness and accuracy of monitoring technologies but also on balancing system cost-effectiveness and ease of use to achieve a transition from the concept of smart farming to its practical implementation.

Key words: cow's estrus, estrus monitoring, estrus identification, physical symptoms, behavior pattern, smart breeding

CLC Number: