1 |
杨邦杰, 裴志远. 农作物长势的定义与遥感监测[J]. 农业工程学报, 1999, 15(3): 214-218.
|
|
YANG B J, PEI Z Y. Definition of crop condition and crop monitoring using remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 1999, 15(3): 214-218.
|
2 |
王翔宇, 杨菡, 李鑫星, 等. 基于无人机可见光谱遥感的玉米长势监测[J]. 光谱学与光谱分析, 2021, 41(1): 265-270.
|
|
WANG X Y, YANG H, LI X X, et al. Research on maize growth monitoring based on visible spectrum of UAV remote sensing[J]. Spectroscopy and spectral analysis, 2021, 41(1): 265-270.
|
3 |
王蕾, 王鹏新, 李俐, 等. 河北省中部平原玉米长势遥感综合监测[J]. 资源科学, 2018, 40(10): 2099-2109.
|
|
WANG L, WANG P X, LI L, et al. Integrated maize growth monitoring based on gray correlation analysis and remote sense data in the central plain of Hebei province[J]. Resources science, 2018, 40(10): 2099-2109.
|
4 |
魏青, 张宝忠, 魏征, 等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报, 2020, 40(3): 365-372.
|
|
WEI Q, ZHANG B Z, WEI Z, et al. Estimation of canopy chlorophyll content in winter wheat by UAV multispectral remote sensing[J]. Journal of triticeae crops, 2020, 40(3): 365-372.
|
5 |
李平湘, 赵伶俐, 任烨仙. 合成孔径雷达在农业监测中的应用和展望[J]. 地理空间信息, 2017, 15(3): 1-4, 10.
|
|
LI P X, ZHAO L L, REN Y X. Outlook and application of the synthetic aperture radar in agriculture monitoring[J]. Geospatial information, 2017, 15(3): 1-4, 10.
|
6 |
HOSSEINI M, MCNAIRN H. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields[J]. International journal of applied earth observation and geoinformation, 2017, 58: 50-64.
|
7 |
陈仲新, 郝鹏宇, 刘佳, 等. 农业遥感卫星发展现状及中国监测需求分析[J]. 智慧农业, 2019, 1(1): 32-42.
|
|
CHEN Z X, HAO P Y, LIU J, et al. Technical demands for agricultural remote sensing satellites in China[J]. Smart agriculture, 2019, 1(1): 32-42.
|
8 |
陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767.
|
|
CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of remote sensing, 2016, 20(5): 748-767.
|
9 |
张王菲, 陈尔学, 李增元, 等. 雷达遥感农业应用综述[J]. 雷达学报, 2020, 9(3): 444-461.
|
|
ZHANG W F, CHEN E X, LI Z Y, et al. Review of applications of Radar remote sensing in agriculture[J]. Journal of radars, 2020, 9(3): 444-461.
|
10 |
杨知. 基于极化SAR的水稻物候期监测与参数反演研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
|
|
YANG Z. Rice phenology estimation and parameter retrieval based on polarimetric synthetic aperture radar (SAR) [D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2017.
|
11 |
LIEW S C, CHEN P, KAM S P, et al. Rice crops monitoring in the Mekong River delta using combined ERS and RADARSAT synthetic aperture radar[C]// IGARSS ' 98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174). Piscataway, New Jersey, USA: IEEE, 1998: 2746-2748.
|
12 |
DURDEN S L, MORRISSEY L A, LIVINGSTON G P. Microwave backscatter and attenuation dependence on leaf area index for flooded rice fields[J]. IEEE transactions on geoscience and remote sensing, 1995, 33(3): 807-810.
|
13 |
CHAKRABORTY M, PARIHAR J S, MANJUNATH K R, et al. Evaluation of ERS-1 SAR data for agricultural crop monitoring in India[J]. Geocarto international, 2002, 17(1): 69-72.
|
14 |
ASCHBACHER J, PONGSRIHADULCHAI A, KARNCHANASUTHAM S, et al. Assessment of ERS-1 SAR data for rice crop mapping and monitoring[C]// 1995 International Geoscience and Remote Sensing Symposium, IGARSS ' 95. Quantitative Remote Sensing for Science and Applications. Piscataway, New Jersey, USA: IEEE, 1995: 2183-2185.
|
15 |
KUROSU T, FUJITA M, CHIBA K. Monitoring of rice crop growth from space using theERS-1 C-band SAR[J]. IEEE transactions on geoscience and remote sensing, 1995, 33(4): 1092-1096.
|
16 |
LE TOAN T, RIBBES F, WANG L F, et al. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results[J]. IEEE transactions on geoscience and remote sensing, 1997, 35(1): 41-56.
|
17 |
RIBBES F. Rice field mapping and monitoring withRADARSAT data[J]. International journal of remote sensing, 1999, 20(4): 745-765.
|
18 |
SHAO Y, FAN X T, LIU H, et al. Rice monitoring and production estimation using multitemporal RADARSAT[J]. Remote sensing of environment, 2001, 76(3): 310-325.
|
19 |
孙芳, 罗贤云, 尹志盈, 等. 农作物后向散射特性的测量[J]. 遥感学报, 1999, 3(2): 128-133.
|
|
SUN F, LUO X Y, YIN Z Y, et al. Measurement of backscattering properties on crops[J]. Journal of remote sensing, 1999, 3(2): 128-133.
|
20 |
INOUE Y, KUROSU T, MAENO H, et al. Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[J]. Remote sensing of environment, 2002, 81(2/3): 194-204.
|
21 |
KIM S, KIM B, KONG Y, et al. Radar backscattering measurements of rice crop using X-band scatterometer[J]. IEEE transactions on geoscience and remote sensing, 2000, 38(3): 1467-1471.
|
22 |
东朝霞, 王迪, 周清波, 等. 基于SAR遥感的北方旱地秋收作物识别研究[J]. 中国农业资源与区划, 2016, 37(8): 27-36.
|
|
DONG Z X, WANG D, ZHOU Q B, et al. Dryland crop identification based on synthetic aperture radar in the North China plain[J]. Chinese journal of agricultural resources and regional planning, 2016, 37(8): 27-36.
|
23 |
吴永辉, 计科峰, 郁文贤. 利用SVM的全极化、双极化与单极化SAR图像分类性能的比较[J]. 遥感学报, 2008, 12(1): 46-53.
|
|
WU Y H, JI K F, YU W X. Comparison of classification performance of full-, dual- and single-polarization SAR images using SVM[J]. Journal of remote sensing, 2008, 12(1): 46-53.
|
24 |
王迪, 周清波, 陈仲新, 等. 基于合成孔径雷达的农作物识别研究进展[J]. 农业工程学报, 2014, 30(16): 203-212.
|
|
WANG D, ZHOU Q B, CHEN Z X, et al. Research advances on crop identification using synthetic aperture radar[J]. Transactions of the Chinese society of agricultural engineering, 2014, 30(16): 203-212.
|
25 |
MCNAIRN H, HOCHHEIM K, RABE N. Applying polarimetric radar imagery for mapping the productivity of wheat crops[J]. Canadianjournal of remote sensing, 2004, 30(3): 517-524.
|
26 |
陶亮亮, 李京, 蒋金豹, 等. 利用RADARSAT-2雷达数据与改进的水云模型反演冬小麦叶面积指数[J]. 麦类作物学报, 2016, 36(2): 236-242.
|
|
TAO L L, LI J, JIANG J B, et al. Leaf area index inversion of winter wheat using RADARSAT-2 data and modified water-cloud model[J]. Journal of triticeae crops, 2016, 36(2): 236-242.
|
27 |
SATALINO G, MATTIA F, LE TOAN T, et al. Wheat crop mapping by usingASAR AP data[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(2): 527-530.
|
28 |
OUAADI N, JARLAN L, EZZAHAR J, et al. Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas[J]. Remote sensing of environment, 2020, 251: ID 112050.
|
29 |
MERONI M, MARINHO E, SGHAIER N, et al. Remote sensing based yield estimation in a stochastic framework: Case study of durum wheat in Tunisia[J]. Remote sensing, 2013, 5(2): 539-557.
|
30 |
何磊. 小麦微波散射机理与生物量参数反演研究[D]. 成都: 电子科技大学, 2017.
|
|
HE L. Research on microvave scattering mechanism and inversion of biomass of wheat [D]. Chengdu: University of Electronic Science and Technology of China, 2017.
|
31 |
MATTIA F, LE TOAN T, PICARD G, et al. Multitemporal c-band radar measurements on wheat fields[J]. IEEE transactions on geoscience and remote sensing, 2003, 41(7): 1551-1560.
|
32 |
TACONET O, VIDAL-MADJAR D, EMBLANCH C, et al. Taking into account vegetation effects to estimate soil moisture from C-band radar measurements[J]. Remote sensing of environment, 1996, 56(1): 52-56.
|
33 |
TACONET O, BENALLEGUE M, VIDAL-MADJAR D, et al. Estimation of soil and crop parameters for wheat from airborne radar backscattering data in C and X bands[J]. Remote sensing of environment, 1994, 50(3): 287-294.
|
34 |
HE F C, GU L J, ZHENG X M, et al. Semiempirical calibration of the WCM for estimating maize biomass in northeast China[J]. IEEE geoscience and remote sensing letters, 2021, 18(4): 582-586.
|
35 |
HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of leaf area index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote sensing of environment, 2015, 170: 77-89.
|
36 |
MANDAL D, HOSSEINI M, MCNAIRN H, et al. An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data[J]. International journal of applied earth observation and geoinformation, 2019, 82: ID 101893.
|
37 |
孙盛, 刘立露, 胡忠文, 等. 基于Sentinel-1A双极化时序数据的甘蔗株高反演方法[J]. 农业机械学报, 2022, 53(2): 186-194.
|
|
SUN S, LIU L L, HU Z W, et al. Inversion method of sugarcane plant height based on Sentinel-1A dual-polarization time series data[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(2): 186-194.
|
38 |
YANG H, YANG G J, GAULTON R, et al. In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery[J]. Precision agriculture, 2019, 20(3): 630-648.
|
39 |
SOUYRIS J, STACY N, AINSWORTH T, et al. Sar compact polarimetry (cp) for earth observation and planetology: Concept and challenges a study case at p band[C]// International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Noordwijk, Netherlands: European Space Agency, 2007.
|
40 |
RANEY R K, CAHILL J T S, PATTERSON G W, et al. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters[J]. Journal of geophysical research: Planets, 2012, 117(E12): 5093-5096.
|
41 |
CARTER L M, CAMPBELL D B, CAMPBELL B A. Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo[J]. Journal of geophysical research: Planets, 2004, 109(E6): DOI:1029/2003JE002227.
|
42 |
张红, 谢镭, 王超, 等. 简缩极化SAR数据信息提取与应用[J]. 中国图象图形学报, 2013, 18(9): 1065-1073.
|
|
ZHANG H, XIE L, WANG C, et al. Information extraction and application of compact polarimetric SAR data[J]. Journal of image and graphics, 2013, 18(9): 1065-1073.
|
43 |
杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015.
|
|
YANG H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. Beijing: Chinese Academy of Forestry, 2015.
|
44 |
ZHANG W F, CHEN E X, LI Z Y, et al. Rape (Brassica napus L.) growth monitoring and mapping based on radarsat-2 time-series data[J]. Remote sensing, 2018, 10(2): ID 206.
|
45 |
YANG Z, LI K, LIU L, et al. Rice growth monitoring using simulated compact polarimetricC band SAR[J]. Radio science, 2014, 49(12): 1300-1315.
|
46 |
曾亮. 多波段多极化SAR图像融合解译研究[D]. 杭州: 杭州电子科技大学, 2011.
|
|
ZENG L. A study on multi-bands and multi-polarimetric SAR image fusion interpretation[D]. Hangzhou: Hangzhou Dianzi University, 2011.
|
47 |
MICHELSON D B, LILJEBERG B M, PILESJÖ P. Comparison of algorithms for classifying Swedish landcover using Landsat TM and ERS-1 SAR data[J]. Remote sensing of environment, 2000, 71(1): 1-15.
|
48 |
DONG J W, XIAO X M, CHEN B Q, et al. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery[J]. Remote sensing of environment, 2013, 134: 392-402.
|
49 |
王乐, 樊彦国, 樊博文, 等. 基于高分卫星的冬小麦长势监测及驱动因素分析[J]. 灌溉排水学报, 2023, 42(5): 24-32, 51.
|
|
WANG L, FAN Y G, FAN B W, et al. Monitoring winter wheat growth and analyzing its determinants using high-resolution satellite imagery[J]. Journal of irrigation and drainage, 2023, 42(5): 24-32, 51.
|
50 |
PARK J G, TATEISHI R, MATSUOKA M. A proposal of the temporal window operation (TWO) method to remove high-frequency noises in AVHRR NDVI time series data[J]. Journal of the Japan society of photogrammetry and remote sensing, 1999, 38(5): 36-47.
|
51 |
HALDAR D, TRIPATHY R, DAVE V, et al. Monitoring cotton crop condition through synergy of optical and radar remote sensing[J]. Geocarto international, 2022, 37(2): 377-395.
|
52 |
ALEBELE Y, ZHANG X E, WANG W H, et al. Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target Gaussian regressor stacking[J]. Remote sensing, 2020, 12(16): ID 2564.
|
53 |
WU B F, ZHANG M, ZENG H W, et al. Challenges and opportunities in remote sensing-based crop monitoring: A review[J]. Nationalscience review, 2023, 10(4): ID nwac290.
|
54 |
任建强, 刘杏认, 陈仲新, 等. 基于作物生物量估计的区域冬小麦单产预测[J]. 应用生态学报, 2009, 20(4): 872-878.
|
|
REN J Q, LIU X R, CHEN Z X, et al. Prediction of winter wheat yield based on crop biomass estimation at regional scale[J]. Chinese journal of applied ecology, 2009, 20(4): 872-878.
|
55 |
路贵和, 安海润. 作物抗旱性鉴定方法与指标研究进展[J]. 山西农业科学, 1999, 27(4): 39-43.
|
|
LU G H, AN H R. Progress in the research of crop drought-resistance appraise methods and indexes[J]. Journal of Shanxi agricultural sciences, 1999, 27(4): 39-43.
|
56 |
赵娟, 黄文江, 张耀鸿, 等. 冬小麦不同生育时期叶面积指数反演方法[J]. 光谱学与光谱分析, 2013, 33(9): 2546-2552.
|
|
ZHAO J, HUANG W J, ZHANG Y H, et al. Inversion of leaf area index during different growth stages in winter wheat[J]. Spectroscopy and spectral analysis, 2013, 33(9): 2546-2552.
|
57 |
刘姣娣, 曹卫彬, 马蓉. 棉花叶面积指数的遥感估算模型研究[J]. 中国农业科学, 2008, 41(12): 4301-4306.
|
|
LIU J D, CAO W B, MA R. Study on remote sensing estimation models about LAI of cotton[J]. Scientia agricultura sinica, 2008, 41(12): 4301-4306.
|
58 |
刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测[J]. 中国农业科学, 2018, 51(16): 3060-3073.
|
|
LIU C, YANG G J, LI Z H, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion[J]. Scientia agricultura sinica, 2018, 51(16): 3060-3073.
|
59 |
兰仕浩, 李映雪, 吴芳, 等. 基于卫星光谱尺度反射率的冬小麦生物量估算[J]. 农业工程学报, 2022, 38(24): 118-128.
|
|
LAN S H, LI Y X, WU F, et al. Winter wheat biomass estimation based on satellite spectral-scale reflectance[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(24): 118-128.
|
60 |
贺佳, 刘冰锋, 李军. 不同生育时期冬小麦叶面积指数高光谱遥感监测模型[J]. 农业工程学报, 2014, 30(24): 141-150.
|
|
HE J, LIU B F, LI J. Monitoring model of leaf area index of winter wheat based on hyperspectral reflectance at different growth stages[J]. Transactions of the Chinese society of agricultural engineering, 2014, 30(24): 141-150.
|
61 |
WATANABE K, GUO W, ARAI K, et al. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling[J]. Frontiers in plant science, 2017, 8: ID 421.
|
62 |
JAMES N T. The use of bose-einstein statistics in analysing the distribution of intracellular organelles: The development of a bose-einstein probe[J]. Experientia, 1989, 45(11/12): 1078-1081.
|
63 |
龚有锐. 小麦的倒伏和防止措施[J]. 湖北农业科学, 1982, 21(9): 4-7.
|
|
GONG Y R. Lodging of wheat and its preventive measures[J]. Hubei agricultural sciences, 1982, 21(9): 4-7.
|
64 |
CHEN J M, PAVLIC G, BROWN L, et al. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[J]. Remote sensing of environment, 2002, 80(1): 165-184.
|
65 |
梁亮, 杨敏华, 张连蓬, 等. 基于SVR算法的小麦冠层叶绿素含量高光谱反演[J]. 农业工程学报, 2012, 28(20): 162-171, 294.
|
|
LIANG L, YANG M H, ZHANG L P, et al. Chlorophyll content inversion with hyperspectral technology for wheat canopy based on support vector regression algorithm[J]. Transactions of the Chinese society of agricultural engineering, 2012, 28(20): 162-171, 294.
|
66 |
李云梅, 倪绍祥, 王秀珍. 线性回归模型估算水稻叶片叶绿素含量的适宜性分析[J]. 遥感学报, 2003, 7(5): 364-371.
|
|
LI Y M, NI S X, WANG X Z. The robustness of linear regression model in rice leaf chlorophyll concentration prediction[J]. Journal of remote sensing, 2003, 7(5): 364-371.
|
67 |
PENG D L, HUANG J F, LI C J, et al. Modelling paddy rice yield using MODIS data[J]. Agricultural and forest meteorology, 2014, 184: 107-116.
|
68 |
ATZBERGER C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs[J]. Remote sensing, 2013, 5(2): 949-981.
|
69 |
FELDMAN A F, SHORT GIANOTTI D J, TRIGO I F, et al. Land-atmosphere drivers of landscape-scale plant water content loss[J]. Geophysical research letters, 2020, 47(22): ID e2020GL090331.
|
70 |
鞠乐, 齐军仓, 陈培育, 等. 干旱胁迫对大麦种子萌发、幼苗生长及生理特性的影响[J]. 新疆农业科学, 2023, 60(8): 1879-1886.
|
|
JU L, QI J C, CHEN P Y, et al. Effects of drought stress on seed germination, seedling growth and physiological characteristics of barley[J]. Xinjiang agricultural sciences, 2023, 60(8): 1879-1886.
|
71 |
安文韬. 基于极化SAR的目标极化分解与散射特征提取研究[D]. 北京: 清华大学, 2010.
|
|
AN W T. The polarimetric decomposition and scattering characteristic extraction of polarimetric SAR[D]. Beijing: Tsinghua University, 2010.
|
72 |
KIM Y, JACKSON T, BINDLISH R, et al. Retrieval of wheat growth parameters with radar vegetation indices[J]. IEEE geoscience and remote sensing letters, 2014, 11(4): 808-812.
|
73 |
尼格拉·吐尔逊, 依力亚斯江·努尔麦麦提, 王远弘, 等. 基于H/A/α分解全极化合成孔径雷达数据的干旱区土壤盐渍化分类[J]. 江苏农业科学, 2019, 47(22): 273-279.
|
|
NIGELA T, YILIYASIJIANG N, WANG Y H, et al. Classification of soil salinization in arid areas based on H/A/α polarimetric decomposition method of POLSAR data[J]. Jiangsu agricultural sciences, 2019, 47(22): 273-279.
|
74 |
FERRO-FAMIL L, POTTIER E, LEE J S. Unsupervised classification of multifrequency and fully polarimetricSAR images based on the H/A/Alpha-wishart classifier[J]. IEEE transactions on geoscience and remote sensing, 2001, 39(11): 2332-2342.
|
75 |
MACRÌ PELLIZZERI T. Classification of polarimetric SAR images of suburban areas using joint annealed segmentation and "H/A/α" polarimetric decomposition[J]. ISPRS journal of photogrammetry and remote sensing, 2003, 58(1/2): 55-70.
|
76 |
张微, 林健, 陈玲, 等. 基于极化分解的极化SAR数据地质信息提取方法研究[J]. 遥感信息, 2014, 29(1): 10-14.
|
|
ZHANG W, LIN J, CHEN L, et al. Geological information extraction using polarimetric SAR based on polarization decomposition[J]. Remote sensing information, 2014, 29(1): 10-14.
|
77 |
CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE transactions on geoscience and remote sensing, 1996, 34(2): 498-518.
|
78 |
赵丽仙, 张王菲, 李云, 等. 基于高分三号卫星数据与H/A/ α ¯ 分解特征参数的农作物分类研究[J]. 浙江农业学报, 2022, 34(11): 2491-2503.
|
|
ZHAO L X, ZHANG W F, LI Y, et al. Crops classification based on GF-3 satellite data and H/A/ α ¯ decomposition characteristic parameters[J]. Acta agriculturae Zhejiangensis, 2022, 34(11): 2491-2503.
|
79 |
张继超, 郭伟, 周沛希. 雷达植被指数与香农熵在GF-3影像分类中的应用[J]. 测绘科学, 2020, 45(10): 48-54.
|
|
ZHANG J C, GUO W, ZHOU P X. Application of radar vegetation index and Shannon entropy in GF-3 image classification[J]. Science of surveying and mapping, 2020, 45(10): 48-54.
|
80 |
WISEMAN G, MCNAIRN H, HOMAYOUNI S, et al. RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(11): 4461-4471.
|
81 |
ULABY F. Radar measurement of soil moisture content[J]. IEEE transactions on antennas and propagation, 1974, 22(2): 257-265.
|
82 |
ULABY F T, BATLIVALA P P, DOBSON M C. Microwave backscatter dependence on surface roughness, soil moisture, and soil texture: Part I-bare soil[J]. IEEE transactions on geoscience electronics, 1978, 16(4): 286-295.
|
83 |
ULABY F. Radar response to vegetation[J]. IEEE transactions on antennas and propagation, 1975, 23(1): 36-45.
|
84 |
KIM Y, JACKSON T, BINDLISH R, et al. Radar vegetation index for estimating the vegetation water content of rice and soybean[J]. IEEE geoscience and remote sensing letters, 2012, 9(4): 564-568.
|
85 |
NASIRZADEHDIZAJI R, BALIK SANLI F, ABDIKAN S, et al. Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage[J]. Applied sciences, 2019, 9(4): ID 655.
|
86 |
MANDAL D, KUMAR V, RATHA D, et al. Dual polarimetric radar vegetation index for crop growth monitoring using Sentinel-1 SAR data[J]. Remote sensing of environment, 2020, 247: ID 111954.
|
87 |
RATHA D, MANDAL D, KUMAR V, et al. A generalized volume scattering model-based vegetation index from polarimetric SAR data[J]. IEEE geoscience and remote sensing letters, 2019, 16(11): 1791-1795.
|
88 |
MANDAL D, RATHA D, BHATTACHARYA A, et al. A radar vegetation index for crop monitoring using compact polarimetric SAR data[J]. IEEE transactions on geoscience and remote sensing, 2020, 58(9): 6321-6335.
|
89 |
董彦芳, 孙国清, 庞勇. 基于ENVISAT ASAR数据的水稻监测[J]. 中国科学(D辑: 地球科学), 2005, 35(7): 682-689.
|
|
DONG Y F, SUN G Q, PANG Y. Rice monitoring based on ENVISAT ASAR data[J]. Science in China, SerD, 2005, 35(7): 682-689.
|
90 |
CHEN J S, LIN H, PEI Z Y. Application of ENVISAT ASAR data in mapping rice crop growth in southern China[J]. IEEE geoscience and remote sensing letters, 2007, 4(3): 431-435.
|
91 |
DENTE L, SATALINO G, MATTIA F, et al. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[J]. Remote sensing of environment, 2008, 112(4): 1395-1407.
|
92 |
ZHANG W F, CHEN E X, LI Z Y, et al. Using compact polarimetric parameters for rape (Brassica napus L.) LAI inversion[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, New Jersey, USA: IEEE, 2017: 5846-5849.
|
93 |
MCNAIRN H, BRISCO B. The application of C-band polarimetric SAR for agriculture: A review[J]. Canadian journal of remote sensing, 2004, 30(3): 525-542.
|
94 |
康伟, 张王菲, 张亚红, 等. 小麦生物量极化分解参数响应及反演[J]. 沈阳农业大学学报, 2019, 50(5): 585-594.
|
|
KANG W, ZHANG W F, ZHANG Y H, et al. Inversion and polarimetric information response analysis of wheat biomass[J]. Journal of Shenyang agricultural university, 2019, 50(5): 585-594.
|
95 |
XU F, JIN Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE transactions on geoscience and remote sensing, 2005, 43(10): 2351-2364.
|
96 |
LIU C, SHANG J L, VACHON P W, et al. Multiyear crop monitoring using polarimetric RADARSAT-2 data[J]. IEEE transactions on geoscience and remote sensing, 2013, 51(4): 2227-2240.
|
97 |
FREEMAN A, DURDEN S L. A three-component scattering model for polarimetricSAR data[J]. IEEE transactions on geoscience and remote sensing, 1998, 36(3): 963-973.
|
98 |
CANISIUS F, FERNANDES R. ALOS PALSAR L-band polarimetric SAR data and in situ measurements for leaf area index assessment[J]. Remote sensing letters, 2012, 3(3): 221-229.
|
99 |
BLAES X, VANHALLE L, DEFOURNY P. Efficiency of crop identification based on optical and SAR image time series[J]. Remote sensing of environment, 2005, 96(3/4): 352-365.
|
100 |
张亚红, 吴娇娇, 胥喆, 等. 合成孔径雷达在农作物长势监测中的应用[J]. 安徽农业科学, 2016, 44(27): 220-222, 244.
|
|
ZHANG Y H, WU J J, XU Z, et al. Application of synthetic aperture radar in crop growth monitoring[J]. Journal of Anhui agricultural sciences, 2016, 44(27): 220-222, 244.
|
101 |
YANG Z, LI K, SHAO Y, et al. Estimation of paddy rice variables with a modified water cloud model and improved polarimetric decomposition using multi-temporal RADARSAT-2 images[J]. Remote sensing, 2016, 8(10): ID 878.
|
102 |
CANISIUS F, SHANG J L, LIU J G, et al. Tracking crop phenological development using multi-temporal polarimetric RADARSAT-2 data[J]. Remote sensing of environment, 2018, 210: 508-518.
|
103 |
JIAO X F, MCNAIRN H, SHANG J L, et al. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index[J]. Canadian journal of remote sensing, 2011, 37(1): 69-81.
|
104 |
邹斌, 张腊梅, 孙德明, 等. PolSAR图像信息提取技术及应用的发展[J]. 遥感技术与应用, 2009, 24(3): 263-273.
|
|
ZOU B, ZHANG L M, SUN D M, et al. Development and application of information extraction using polarimetric SAR data[J]. Remote sensing technology and application, 2009, 24(3): 263-273.
|
105 |
张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289-3297.
|
|
ZHANG L M, DUAN B L, ZOU B. Research development on target decomposition method of polarimetric SAR image[J]. Journal of electronics & information technology, 2016, 38(12): 3289-3297.
|
106 |
DEY S, BHATTACHARYA A, RATHA D, et al. Target characterization and scattering power decomposition for full and compact polarimetric SAR data[J]. IEEE transactions on geoscience and remote sensing, 2021, 59(5): 3981-3998.
|
107 |
LEE J S, POTTIER E. Polarimetric radar imaging: From basics to applications[M]. Boca Raton: Crc Press-Taylor & Francis Group, 2009.
|
108 |
CLOUDE S. Polarisation: Applications in remote sensing[M]. Oxford: Oxford University Press, 2009.
|
109 |
SOUYRIS J C, IMBO P, FJORTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The/spl Pi// 4 mode[J]. IEEE transactions on geoscience and remote sensing, 2005, 43(3): 634-646.
|
110 |
ZHANG H, XIE L, WANG C, et al. Investigation of the capability of h-alpha decomposition of compact polarimetric SAR[J]. IEEE geoscience and remote sensing letters, 2014, 11(4): 868-872.
|
111 |
RANEY R. Hybrid-polarity SAR architecture[C]// 2007 IEEE International Symposium on Geoscience and Remote Sensing. Piscataway, New Jersey, USA: IEEE, 2007: 3397-3404.
|
112 |
ULABY F T, SARABANDI K, MCDONALD K, et al. Michigan microwave canopy scattering model[J]. Internationaljournal of remote sensing, 1990, 11(7): 1223-1253.
|
113 |
STILES J M, SARABANDI K. Electromagnetic scattering from grassland. Part I. A fully phase-coherent scattering model[J]. IEEE transactions on geoscience and remote sensing, 2000, 38(1): 339-348.
|
114 |
LIANG P, PIERCE L E, MOGHADDAM M. Radiative transfer model for microwave bistatic scattering from forest canopies[J]. IEEE transactions on geoscience and remote sensing, 2005, 43(11): 2470-2483.
|
115 |
TOURE A, THOMSON K P B, EDWARDS G, et al. Adaptation of theMIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[J]. IEEE transactions on geoscience and remote sensing, 1994, 32(1): 47-61.
|
116 |
李昕. 基于全极化SAR图像的植被信息提取技术研究[D]. 成都: 电子科技大学, 2015.
|
|
LI X. Technology research of vegetation information extraction based on fully polarimetric SAR image[D]. Chengdu: University of Electronic Science and Technology of China, 2015
|
117 |
吴学睿. GNSS-R陆面遥感散射特性研究[D]. 大连: 大连海事大学, 2012.
|
|
WU X R. GNSS-R land surface remote sensing scattering properties study[D]. Dalian: Dalian Maritime University, 2012.
|
118 |
JIA M Q, TONG L, ZHANG Y Z, et al. Rice biomass estimation using radar backscattering data at S-band[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(2): 469-479.
|
119 |
LANG R, SALEH H. Microwave inversion of leaf area and inclination angle distributions from backscattered data[J]. IEEE transactions on geoscience and remote sensing, 1985, GE-23(5): 685-694.
|
120 |
KASISCHKE E S, CHRISTENSEN N L. Connecting forest ecosystem and microwave backscatter models[J]. International journal of remote sensing, 1990, 11(7): 1277-1298.
|
121 |
CHEN G Q, ZHANG J W, LIU P, et al. An empirical model for changes in the leaf area of maize[J]. Canadian journal of plant science, 2014, 94(4): 749-757.
|
122 |
杨沈斌. 基于ASAR数据的水稻制图与水稻估产研究[D]. 南京: 南京信息工程大学, 2008.
|
|
YANG S B. Study on rice mapping and rice yield estimation based on ASAR data[D]. Nanjing: Nanjing University of Information, 2008.
|
123 |
东朝霞. 基于全极化SAR数据的旱地作物识别与生物学参数反演研究[D]. 北京: 中国农业科学院, 2016.
|
|
DONG Z X. Dryland crop identification and biological parameters estimation based on full-polarization SAR data[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
|
124 |
张晓倩, 刘湘南, 谭正. 基于全极化RADARSAT-2数据的水稻生物量估算模型[J]. 农业现代化研究, 2012, 33(2): 249-252.
|
|
ZHANG X Q, LIU X N, TAN Z. Rice biomass estimation based on full-polarization radarsat-2 data[J]. Research of agricultural modernization, 2012, 33(2): 249-252.
|
125 |
SINGH D. Scatter meter performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X-band[J]. International journal of remote sensing, 2006, 27(19): 4101-4115.
|
126 |
NDIKUMANA E, TONG MINH DHO, DANG NGUYEN H, et al. Estimation of rice height and biomass using multitemporal SAR Sentinel-1 for Camargue, Southern France[J]. Remote sensing, 2018, 10(9): ID 1394.
|
127 |
BAGHDADI N, HOLAH N, ZRIBI M. Soil moisture estimation using multi-incidence and multi-polarizationASAR data[J]. International journal of remote sensing, 2006, 27(10): 1907-1920.
|
128 |
许涛, 廖静娟, 沈国状, 等. 植被微波散射模型研究综述[J]. 遥感信息, 2015, 30(5): 3-13.
|
|
XU T, LIAO J J, SHEN G Z, et al. Progresses on microwave scattering model of vegetation[J]. Remote sensing information, 2015, 30(5): 3-13.
|
129 |
ATTEMA E P W, ULABY F T. Vegetation modeled as a water cloud[J]. Radioscience, 1978, 13(2): 357-364.
|
130 |
CHAMPION I, PREVOT L, GUYOT G. Generalized semi-empirical modelling of wheat radar response[J]. Internationaljournal of remote sensing, 2000, 21(9): 1945-1951.
|
131 |
BÉRIAUX E, WALDNER F, COLLIENNE F, et al. Maize leaf area index retrieval from synthetic quad pol SAR time series using the water cloud model[J]. Remote sensing, 2015, 7(12): 16204-16225.
|
132 |
张晓倩, 郭琳, 马尚杰, 等. 利用时序合成孔径雷达数据监测水稻叶面积指数[J]. 农业工程学报, 2014, 30(13): 185-193.
|
|
ZHANG X Q, GUO L, MA S J, et al. Monitoring rice leaf area index using time-series SAR data[J]. Transactions of the Chinese society of agricultural engineering, 2014, 30(13): 185-193.
|
133 |
DE ROO R D, DU Y, ULABY F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE transactions on geoscience and remote sensing, 2001, 39(4): 864-872.
|
134 |
陈怀亮, 李颖, 张红卫. 农作物长势遥感监测业务化应用与研究进展[J]. 气象与环境科学, 2015, 38(1): 95-102.
|
|
CHEN H L, LI Y, ZHANG H W. Operational application and research review of crop growth monitoring with remote sensing[J]. Meteorological and environmental sciences, 2015, 38(1): 95-102.
|
135 |
KIM Y, HONG S, LEE K, et al. Estimating wheat growth for radar vegetation indices[C]// 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS. Piscataway, New Jersey, USA: IEEE, 2013: 3219-3222.
|
136 |
HALDAR D, DAVE V, MISRA A, et al. Radar Vegetation Index for assessing cotton crop condition using RISAT-1 data[J]. Geocarto international, 2020, 35(4): 364-375.
|
137 |
赵艳霞, 周秀骥, 梁顺林. 遥感信息与作物生长模式的结合方法和应用——研究进展[J]. 自然灾害学报, 2005, 14(1): 103-109.
|
|
ZHAO Y X, ZHOU X J, LIANG S L. Methods and application of coupling remote sensing data and crop growth models: Advance in research[J]. Journal of natural disasters, 2005, 14(1): 103-109.
|
138 |
DENTE L, RINALDI M, MATTIA F, et al. On the assimilation of C-band radar data into CERES-wheat model[C]// IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS ' 04. Proceedings. 2004. Piscataway, New Jersey, USA: IEEE, 2004: 1284-1287.
|
139 |
谭正. 基于SAR数据和作物生长模型同化的水稻长势监测与估产研究[D]. 北京: 中国地质大学(北京), 2012.
|
|
TAN Z. Study on rice growth monitoring and yield prediction based on assimilation of SAR data and crop growth model[D]. Beijing: China University of Geosciences, 2012.
|