1 |
ROLDÁN J J, GARCIA-AUNON P, GARZÓN M, et al. Heterogeneous multi-robot system for mapping environmental variables of greenhouses[J]. Sensors, 2016, 16(7): ID 1018.
|
2 |
JIANG S K, WANG S L, YI Z Y, et al. Autonomous navigation system of greenhouse mobile robot based on 3D LiDAR and 2D LiDAR SLAM[J]. Frontiers in plant science, 2022, 13: ID 815218.
|
3 |
XIE B B, JIN Y C, FAHEEM M, et al. Research progress of autonomous navigation technology for multi-agricultural scenes[J]. Computers and electronics in agriculture, 2023, 211: ID 107963.
|
4 |
吴雄伟, 周云成, 刘峻渟, 等. 面向温室移动机器人的无监督视觉里程估计方法[J]. 农业工程学报, 2023, 39(10): 163-174.
|
|
WU X W, ZHOU Y C, LIU J T, et al. Unsupervised visual odometry method for greenhouse mobile robots[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(10): 163-174.
|
5 |
BECHAR A, VIGNEAULT C. Agricultural robots for field operations: Concepts and components[J]. Biosystems engineering, 2016, 149: 94-111.
|
6 |
YANG M. Appropriate-Scale Mechanization in China[C]//2018 ASABE Annual International Meeting. St. Joseph, MI, USA: American Society of Agricultural and Biological Engineers, 2018.
|
7 |
ARAD B, BALENDONCK J, BARTH R, et al. Development of a sweet pepper harvesting robot[J]. Journal of field robotics, 2020, 37(6): 1027-1039.
|
8 |
赵春江, 范贝贝, 李瑾, 等. 农业机器人技术进展、挑战与趋势[J]. 智慧农业(中英文), 2023, 5(4): 1-15.
|
|
ZHAO C J, FAN B B, LI J, et al. Agricultural robots: Technology progress, challenges and trends[J]. Smart agriculture, 2023, 5(4): 1-15.
|
9 |
钱震杰, 金诚谦, 刘政, 等. 无人农场中的智能控制技术应用现状与趋势[J]. 智能化农业装备学报(中英文), 2023, 4 (3): 1-13.
|
|
QIAN Z J, JIN C Q, LIU Z, et al. Development status and trends of intelligent control technology in unmanned farms[J]. Journal of intelligent agricultural mechanization, 2023, 4(3): 1-13.
|
10 |
KOMASILOVS V, STALIDZANS E, OSADCUKS V, et al. Specification development of robotic system for pesticide spraying in greenhouse[C]// 2013 IEEE 14th International symposium on computational intelligence and informatics (CINTI). Piscataway, New Jersey, USA: IEEE, 2013: 453-457.
|
11 |
FUJINAGA T. Strawberries recognition and cutting point detection for fruit harvesting and truss pruning[J]. Precision agriculture, 2024, 25(3): 1262-1283.
|
12 |
WANG B, DING Y, WANG C, et al. G‐ROBOT: An intelligent greenhouse seedling height inspection robot[J]. Journal of robotics, 2022, 2022(1): ID 9355234.
|
13 |
冯青春, 王秀, 邱权, 等. 畜禽舍防疫消毒机器人设计与试验[J]. 智慧农业(中英文), 2020, 2(4): 79-88.
|
|
FENG Q C, WANG X, QIU Q, et al. Design and test of disinfection robot for livestock and poultry house[J]. Smart agriculture, 2020, 2(4): 79-88.
|
14 |
徐济双, 焦俊, 李淼, 等. 融合改进A*算法与模糊PID的病死畜禽运输机器人路径规划与运动控制方法[J]. 智慧农业(中英文), 2023, 5(4): 127-136.
|
|
XU J S, JIAO J, LI M, et al. Path planning and motion control method for sick and dead animal transport robots integrating improved A* algorithm and fuzzy PID[J]. Smart agriculture, 2023, 5(4): 127-136.
|
15 |
GENG X, ZHANG Q L, WEI Q G, et al. A mobile greenhouse environment monitoring system based on the Internet of Things[J]. IEEE access, 2019, 7: 135832-135844.
|
16 |
MESHRAM A T, VANALKAR A V, KALAMBE K B, et al. Pesticide spraying robot for precision agriculture: A categorical literature review and future trends[J]. Journal of field robotics, 2022, 39(2): 153-171.
|
17 |
MIAO Z H, YU X Y, LI N, et al. Efficient tomato harvesting robot based on image processing and deep learning[J]. Precision agriculture, 2023, 24(1): 254-287.
|
18 |
YAO X B, BAI Y H, ZHANG B H, et al. Autonomous navigation and adaptive path planning in dynamic greenhouse environments utilizing improved LeGO-LOAM and OpenPlanner algorithms[J]. Journal of field robotics, 2024, 41(7): 2427-2440.
|
19 |
FENG X, LIANG W J, CHEN H Z, et al. Autonomous localization and navigation for agricultural robots in greenhouse[J]. Wireless personal communications, 2023, 131(3): 2039-2053.
|
20 |
WEISS U, BIBER P. Plant detection and mapping for agricultural robots using a 3D LiDAR sensor[J]. Robotics and autonomous systems, 2011, 59(5): 265-273.
|
21 |
AGUIAR A S, DOS SANTOS F N, CUNHA J B, et al. Localization and mapping for robots in agriculture and forestry: A survey[J]. Robotics, 2020, 9(4): ID 97.
|
22 |
CHAKRABORTY S, ELANGOVAN D, GOVINDARAJAN P L, et al. A comprehensive review of path planning for agricultural ground robots[J]. Sustainability, 2022, 14(15): ID 9156.
|
23 |
GAN H, LEE W S. Development of a navigation system for a smart farm[J]. IFAC-PapersOnLine, 2018, 51(17): 1-4.
|
24 |
YAN Y X, ZHANG B H, ZHOU J, et al. Real-time localization and mapping utilizing multi-sensor fusion and visual-IMU-wheel odometry for agricultural robots in unstructured, dynamic and GPS-denied greenhouse environments[J]. Agronomy, 2022, 12(8): ID 1740.
|
25 |
LOW C B, WANG D W. GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping[J]. IEEE/ASME transactions on mechatronics, 2008, 13(4): 480-484.
|
26 |
RADOČAJ D, PLAŠČAK I, JURIŠIĆ M. Global navigation satellite systems as state-of-the-art solutions in precision agriculture: A review of studies indexed in the web of science[J]. Agriculture, 2023, 13(7): ID 1417.
|
27 |
DOS SANTOS A F, SILVA R PDA, ZERBATO C, et al. Use of real-time extend GNSS for planting and inverting peanuts[J]. Precision agriculture, 2019, 20(4): 840-856.
|
28 |
DE PRETER A, ANTHONIS J, DE BAERDEMAEKER J. Development of a robot for harvesting strawberries[J]. IFAC-PapersOnLine, 2018, 51(17): 14-19.
|
29 |
LONG Z H, XIANG Y, LEI X M, et al. Integrated indoor positioning system of greenhouse robot based on UWB/IMU/ODOM/LIDAR[J]. Sensors, 2022, 22(13): ID 4819.
|
30 |
崔鑫宇, 崔冰波, 马振, 等. 几何路径跟踪组合算法及其农业机械自动导航应用[J]. 智能化农业装备学报(中英文), 2023(3): 24-31.
|
|
CUI X Y, CUI B B, MA Z, et al. Integration of geometric-based path tracking controller and its application in agricultural machinery automatic navigation[J]. Journal of intelligent agricultural mechanization, 2023(3): 24-31.
|
31 |
LONGHI M, TAYLOR Z, POPOVIĆ M, et al. RFID-based localization for greenhouses monitoring using MAVs[C]// 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Piscataway, New Jersey, USA: IEEE, 2018: 905-908.
|
32 |
毕松, 张国轩, 李志军, 等. 基于测距值修正的温室植保机器人定位方法[J]. 农业机械学报, 2023, 54(8): 347-358.
|
|
BI S, ZHANG G X, LI Z J, et al. Positioning method of greenhouse plant protection robot based on distance measurement value correction[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(8): 347-358.
|
33 |
NIU Z A, YANG H Z, ZHOU L, et al. Deep learning-based ranging error mitigation method for UWB localization system in greenhouse[J]. Computers and electronics in agriculture, 2023, 205: ID 107573.
|
34 |
JAN M S, KE J Y, CHANG C L. Integrated positioning method based on UWB and RTK-GNSS for seamless navigation of poultry robots[C]// 2022 International Automatic Control Conference (CACS). Piscataway, New Jersey, USA: IEEE, 2022.
|
35 |
FENG Q C, WANG B W, ZHANG W H, et al. Development and test of spraying robot for anti-epidemic and disinfection in animal housing[C]// 2021 WRC Symposium on Advanced Robotics and Automation (WRC SARA). Piscataway, New Jersey, USA: IEEE, 2021: 24-29.
|
36 |
RESHMA B, KUMAR S S. Precision aquaculture drone algorithm for delivery in sea cages[C]// 2016 IEEE International Conference on Engineering and Technology (ICETECH). Piscataway, New Jersey, USA: IEEE, 2016: 1264-1270.
|
37 |
ENGLISH A, ROSS P, BALL D, et al. Vision based guidance for robot navigation in agriculture[C]// 2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2014: 1693-1698.
|
38 |
兰玉彬, 闫瑜, 王宝聚, 等. 智能施药机器人关键技术研究现状及发展趋势[J]. 农业工程学报, 2022, 38(20): 30-40.
|
|
LAN Y B, YAN Y, WANG B J, et al. Current status and future development of the key technologies for intelligent pesticide spraying robots[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(20): 30-40.
|
39 |
QI H, BANHAZI T M, ZHANG Z, et al. Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings[J]. International journal of agricultural and biological engineering, 2016, 9(2): 29-39.
|
40 |
JOFFE B P, USHER C T. Autonomous robotic system for picking up floor eggs in poultry houses[C]// 2017 ASABE Annual International Meeting. St. Joseph, MI, USA: American Society of Agricultural and Biological Engineers, 2017.
|
41 |
CREMONA J, COMELLI R, PIRE T. Experimental evaluation of Visual-Inertial Odometry systems for arable farming[J]. Journal of field robotics, 2022, 39(7): 1121-1135.
|
42 |
PRIBADI W, PRASETYO Y, JULIANDO D E. Design of fish feeder robot based on arduino-android with fuzzy logic controller[J]. International research journal of advanced engineering and science, 2020, 5(4): 47-50.
|
43 |
DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping: Part I[J]. IEEE robotics & automation magazine, 2006, 13(2): 99-110.
|
44 |
BARTH R, HEMMING J, VAN HENTEN E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation[J]. Biosystems engineering, 2016, 146: 71-84.
|
45 |
SHU F, LESUR P, XIE Y, et al. SLAM in the field: An evaluation of monocular mapping and localization on challenging dynamic agricultural environment[C]// Proceedings of the IEEE/CVF winter conference on applications of computer vision. Piscataway, New Jersey, USA: IEEE, 2021: 1761-1771.
|
46 |
ZHANG S, ZHAO S L, AN D, et al. Visual SLAM for underwater vehicles: A survey[J]. Computer science review, 2022, 46: ID 100510.
|
47 |
SMITT C, HALSTEAD M, ZAENKER T, et al. PATHoBot: A robot for glasshouse crop phenotyping and intervention[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2021: 2324-2330.
|
48 |
JIANG B, HE J R, YANG S Q, et al. Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues[J]. Artificial intelligence in agriculture, 2019, 1: 1-8.
|
49 |
NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: Dense tracking and mapping in real-time[C]// 2011 International Conference on Computer Vision. Piscataway, New Jersey, USA: IEEE, 2011: 2320-2327.
|
50 |
ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM: Large-scale direct monocular SLAM[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 834-849.
|
51 |
DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.
|
52 |
MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 33(5): 1255-1262.
|
53 |
CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE transactions on robotics, 2021, 37(6): 1874-1890.
|
54 |
MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
|
55 |
LABBÉ M, MICHAUD F. Appearance-based loop closure detection for online large-scale and long-term operation[J]. IEEE transactions on robotics, 2013, 29(3): 734-745.
|
56 |
MATSUZAKI S, MASUZAWA H, MIURA J, et al. 3D semantic mapping in greenhouses for agricultural mobile robots with robust object recognition using robots' trajectory[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, New Jersey, USA: IEEE, 2018: 357-362.
|
57 |
KRUL S, PANTOS C, FRANGULEA M, et al. Visual SLAM for indoor livestock and farming using a small drone with a monocular camera: A feasibility study[J]. Drones, 2021, 5(2): ID 41.
|
58 |
XIE S X, ISHIKAWA R, SAKURADA K, et al. Fast structural representation and structure-aware loop closing for visual SLAM[C]// 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2022: 6396-6403.
|
59 |
AGARWAL P, TIPALDI G D, SPINELLO L, et al. Robust map optimization using dynamic covariance scaling[C]// 2013 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 2013: 62-69.
|
60 |
NEETHIRAJAN S. ChickTrack–A quantitative tracking tool for measuring chicken activity[J]. Measurement, 2022, 191: ID 110819.
|
61 |
CREMONA J, CIVERA J, KOFMAN E, et al. GNSS-stereo-inertial SLAM for arable farming[J]. Journal of field robotics, 2023, 41(7): 2215-2225.
|
62 |
SCHWARZ B. Mapping the world in 3D[J]. Nature photonics, 2010, 4(7): 429-430.
|
63 |
DING H Z, ZHANG B H, ZHOU J, et al. Recent developments and applications of simultaneous localization and mapping in agriculture[J]. Journal of field robotics, 2022, 39(6): 956-983.
|
64 |
LOWE T, MOGHADAM P, EDWARDS E, et al. Canopy density estimation in perennial horticulture crops using 3D spinning LiDAR SLAM[J]. Journal of field robotics, 2021, 38(4): 598-618.
|
65 |
ZOU Q, SUN Q, CHEN L, et al. A comparative analysis of LiDAR SLAM-based indoor navigation for autonomous vehicles[J]. IEEE transactions on intelligent transportation systems, 2022, 23(7): 6907-6921.
|
66 |
季宇寒, 李寒, 张漫, 等. 基于激光雷达的巡检机器人导航系统研究[J]. 农业机械学报, 2018, 49(2): 14-21.
|
|
JI Y H, LI H, ZHANG M, et al. Navigation system for inspection robot based on LiDAR[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(2): 14-21.
|
67 |
ZHANG T, PENG Z, LU J. ROS-based autonomous navigation control system for animal farm inspection robots[J]. Animal environment and welfare, 2019: 329-336.
|
68 |
胡勇兵, 倪琦, 黄达, 等. 工厂化循环水养殖鱼池清刷机器人的定位精度分析[J]. 渔业现代化, 2021, 48(2): 16-21, 28.
|
|
HU Y B, NI Q, HUANG D, et al. Analysis on the positioning accuracy of fishpond cleaning robot in industrial aquaculture[J]. Fishery modernization, 2021, 48(2): 16-21, 28.
|
69 |
TAN H R, ZHAO X G, ZHAI C Y, et al. Design and experiments with a SLAM system for low-density canopy environments in greenhouses based on an improved Cartographer framework[J]. Frontiers in plant science, 2024, 15: ID 1276799.
|
70 |
ZHANG J, SINGH S. LOAM: LiDAR odometry and mapping in real-time[C]// In Proceedings of the Robotics: Science and Systems Conference (RSS). Berkeley, California, USA. 2014, 2(9): 1-9.
|
71 |
SHAN T X, ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized LiDAR odometry and mapping on variable terrain[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2018: 4758-4765.
|
72 |
SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: Tightly-coupled LiDAR inertial odometry via smoothing and mapping[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2020: 5135-5142.
|
73 |
DINH N V, KIM G W. Multi-sensor fusion towards VINS: A concise tutorial, survey, framework and challenges[C]// 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). Piscataway, New Jersey, USA: IEEE, 2020: 459-462.
|
74 |
CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309-1332.
|
75 |
谢天轩. 多传感器融合的温室植保机器人建图导航系统设计与实现[D]. 南京: 南京信息工程大学, 2023.
|
76 |
ZHANG J M, LEI J S, ZHAO Y T, et al. The robot fusion mapping method applied in indoor poultry farming environment[C]// 2023 2nd International Conference on Artificial Intelligence, Human-Computer Interaction and Robotics (AIHCIR). Piscataway, New Jersey, USA: IEEE, 2023: 597-602.
|
77 |
VROEGINDEWEIJ B A, IJSSELMUIDEN J, VAN HENTEN E J. Probabilistic localisation in repetitive environments: Estimating a robot's position in an aviary poultry house[J]. Computers and electronics in agriculture, 2016, 124: 303-317.
|
78 |
孙国祥, 黄银锋, 汪小旵, 等. 基于LIO-SAM建图和激光视觉融合定位的温室自主行走系统[J]. 农业工程学报, 2024, 40(3): 227-239.
|
|
SUN G X, HUANG Y F, WANG X C, et al. Autonomous navigation system in a greenhouse using LIO-SAM mapping and laser vision fusion localization[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(3): 227-239.
|
79 |
LIU L X, WANG X, YANG X, et al. Path planning techniques for mobile robots: Review and prospect[J]. Expert systems with applications, 2023, 227: ID 120254.
|
80 |
OHI N, LASSAK K, WATSON R, et al. Design of an autonomous precision pollination robot[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2018: 7711-7718.
|
81 |
PAK J, KIM J, PARK Y, et al. Field evaluation of path-planning algorithms for autonomous mobile robot in smart farms[J]. IEEE access, 2022, 10: 60253-60266.
|
82 |
XU L H, YOU J W, YUAN H L. Real-time parametric path planning algorithm for agricultural machinery kinematics model based on particle swarm optimization[J]. Agriculture, 2023, 13(10): ID 1960.
|
83 |
XIE B B, LIU J Z, HE M, et al. Research progress on autonomous navigation technology of agricultural robot[C]// 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway, New Jersey, USA: IEEE, 2021: 891-898.
|
84 |
XU H M, YU G H, WANG Y M, et al. Path planning of mecanum wheel chassis based on improved A* algorithm[J]. Electronics, 2023, 12(8): 1754.
|
85 |
劳彩莲, 李鹏, 冯宇. 基于改进A*与DWA算法融合的温室机器人路径规划[J]. 农业机械学报, 2021, 52(1): 14-22.
|
|
LAO C L, LI P, FENG Y. Path planning of greenhouse robot based on fusion of improved A* algorithm and dynamic window approach[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(1): 14-22.
|
86 |
高兴旺, 任力生, 王芳. 番茄温室内移动喷药机器人的路径规划研究[J]. 计算机工程与应用, 2024, 60(16):325-332.
|
|
GAO X W, REN L S, WANG F. Path planning study of mobile spraying robot in tomato greenhouse[J]. Computer engineering and applications, 2024, 60(16): 325-332.
|
87 |
HAOTUN LV, CHEN X X, WU G, et al. Research of dynamic path planning of feeding-pushing robot based on A Star algorithm[C]// 2018 ASABE Annual International Meeting. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers, 2018.
|
88 |
王红君, 付勇, 岳有军, 等. 基于并行蚁群算法的设施温室机器人多点路径规划的研究[J]. 江苏农业科学, 2019, 47(17): 237-241.
|
|
WANG H J, FU YYUE Y J, et al. Study on multi-point path planning of facility greenhouse robot based on parallel ant colony algorithm[J]. Jiangsu agricultural sciences, 2019, 47(17): 237-241.
|
89 |
罗智杰, 黄子涛, 许嘉志, 等. 基于改进蚁群算法的多农业机器人路径规划研究[J]. 现代农业装备, 2021, 42(3): 56-62, 68.
|
|
LUO Z J, HUANG Z T, XU J Z, et al. Research on path planning of multi-agricultural robots based on improved ant colony algorithm[J]. Modern agricultural equipment, 2021, 42(3): 56-62, 68.
|
90 |
ZHANG Y J, SUN W M, YANG J, et al. An approach for autonomous feeding robot path planning in poultry smart farm[J]. Animals, 2022, 12(22): ID 3089.
|
91 |
丁久阳. 基于改进RRT的温室移动机器人路径规划[D]. 合肥: 安徽农业大学, 2022.
|
|
DING J Y. Path Planning of greenhouse mobile robot based on improved RRT[D]. Hefei: Anhui Agricultural University, 2022.
|
92 |
BADER J, ZITZLER E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary computation, 2011, 19(1): 45-76.
|
93 |
YANG S X, LI M Q, LIU X H, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation, 2013, 17(5): 721-736.
|
94 |
ZHANG X Y, TIAN Y, JIN Y C. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation, 2015, 19(6): 761-776.
|
95 |
DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[J]. IEEE transactions on evolutionary computation, 2014, 18(4): 577-601.
|
96 |
MAHMUD M S A, ABIDIN M S Z, MOHAMED Z, et al. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment[J]. Computers and electronics in agriculture, 2019, 157: 488-499.
|
97 |
ZHANG X H, GUO Y, YANG J Q, et al. Many-objective evolutionary algorithm based agricultural mobile robot route planning[J]. Computers and electronics in agriculture, 2022, 200: ID 107274.
|
98 |
ZANGINA U, BUYAMIN S, ABIDIN M S Z, et al. Agricultural rout planning with variable rate pesticide application in a greenhouse environment[J]. Alexandria engineering journal, 2021, 60(3): 3007-3020.
|
99 |
LEI T J, LI G M, LUO C M, et al. An informative planning-based multi-layer robot navigation system as applied in a poultry barn[J]. Intelligence & robotics, 2022, 2(4): 313-332.
|
100 |
LI Y, ZHOU M. Study on robotic inspection planning in large-scale chicken house[C]// 2021 ASABE Annual International Virtual Meeting. St. Joseph, State of Michigan, USA: American Society of Agricultural and Biological Engineers, 2021.
|
101 |
王宁, 韩雨晓, 王雅萱, 等. 农业机器人全覆盖作业规划研究进展[J]. 农业机械学报, 2022, 53(S1): 1-19.
|
|
WANG N, HAN Y X, WANG Y X, et al. Research progress of agricultural robot full coverage operation planning[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(S1): 1-19.
|
102 |
CONTENTE O, LAU N, MORGADO F, et al. A path planning application for a mountain vineyard autonomous robot[M]// Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2015: 347-358.
|
103 |
MAZZIA V, SALVETTI F, AGHI D, et al. DeepWay: A Deep Learning waypoint estimator for global path generation[J]. Computers and electronics in agriculture, 2021, 184: ID 106091.
|
104 |
WU X Z, BAI J Q, HAO F Q, et al. Field complete coverage path planning based on improved genetic algorithm for transplanting robot[J]. Machines, 2023, 11(6): ID 659.
|
105 |
POUR ARAB D, SPISSER M, ESSERT C. Complete coverage path planning for wheeled agricultural robots[J]. Journal of field robotics, 2023, 40(6): 1460-1503.
|
106 |
DAVIS A, WILLS P S, GARVEY J E, et al. Developing and field testing path planning for robotic aquaculture water quality monitoring[J]. Applied sciences, 2023, 13(5): ID 2805.
|
107 |
WANG X Y, HONG J Q, SUN Y P, et al. Design of trajectory planning system for river crab farming with automatic feeding boat[J]. Journal of physics: Conference series, 2020, 1575(1): ID 012143.
|
108 |
VROEGINDEWEIJ B A, VAN WILLIGENBURG G L, GROOT KOERKAMP P W G, et al. Path planning for the autonomous collection of eggs on floors[J]. Biosystems engineering, 2014, 121: 186-199.
|
109 |
HAN C Y, WU W B, LUO X W, et al. Visual navigation and obstacle avoidance control for agricultural robots via LiDAR and camera[J]. Remote sensing, 2023, 15(22): ID 5402.
|
110 |
CHATZISAVVAS A, DOSSIS M, DASYGENIS M. Optimizing mobile robot navigation based on A-star algorithm for obstacle avoidance in smart agriculture[J]. Electronics, 2024, 13(11): ID 2057.
|
111 |
PADHY R P, XIA F, CHOUDHURY S K, et al. Monocular vision aided autonomous UAV navigation in indoor corridor environments[J]. IEEE transactions on sustainable computing, 2019, 4(1): 96-108.
|
112 |
WANG L L, LAN Y B, ZHANG Y L, et al. Applications and prospects of agricultural unmanned aerial vehicle obstacle avoidance technology in China[J]. Sensors, 2019, 19(3): ID 642.
|
113 |
CHEN Y L, BAI G Q, ZHAN Y, et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning[J]. IEEE access, 2021, 9: 40728-40742.
|
114 |
LI J Y, ZHANG M, LI M Q, et al. Improved collision avoidance algorithm of autonomous rice transplanter based on virtual goal point[J]. AgriEngineering, 2024, 6(1): 698-723.
|
115 |
TIAN F Y, WANG X W, YU S F, et al. Research on navigation path extraction and obstacle avoidance strategy for pusher robot in dairy farm[J]. Agriculture, 2022, 12(7): ID 1008.
|
116 |
WU H X, ZHANG Y, HUANG L X, et al. Research on vehicle obstacle avoidance path planning based on APF-PSO[J]. Proceedings of the institution of mechanical engineers, part D: Journal of automobile engineering, 2023, 237(6): 1391-1405.
|
117 |
YANG W L, WU P, ZHOU X Q, et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning[J]. Applied sciences, 2021, 11(5): ID 2114.
|
118 |
ZHU J, ZHAO S L, ZHAO R. Path planning for autonomous underwater vehicle based on artificial potential field and modified RRT[C]// 2021 International Conference on Computer, Control and Robotics (ICCCR). Piscataway, New Jersey, USA: IEEE, 2021: 21-25.
|
119 |
ZHANG Y, XIAO Z C, YUAN X X, et al. Obstacle avoidance of two-wheeled mobile robot based on DWA algorithm[C]// 2019 Chinese Automation Congress (CAC). Piscataway, New Jersey, USA: IEEE, 2019: 5701-5706.
|
120 |
WANG Q, LI J L, YANG L W, et al. Distributed multi-mobile robot path planning and obstacle avoidance based on ACO–DWA in unknown complex terrain[J]. Electronics, 2022, 11(14): ID 2144.
|
121 |
张金泽, 赵红, 王宁, 等. 密集障碍物下无人艇模糊双窗口DWA避障算法[J]. 中国舰船研究, 2021, 16(6): 10-18.
|
|
ZHANG J Z, ZHAO H, WANG N, et al. Fuzzy dual-window DWA algorithm for USV in dense obstacle conditions[J]. Chinese journal of ship research, 2021, 16(6): 10-18.
|
122 |
LI Y, LI M, QI J T, et al. Detection of typical obstacles in orchards based on deep convolutional neural network[J]. Computers and electronics in agriculture, 2021, 181: ID 105932.
|
123 |
YU Y, LIU Y F, WANG J C, et al. Obstacle avoidance method based on double DQN for agricultural robots[J]. Computers and electronics in agriculture, 2023, 204: ID 107546.
|
124 |
LÓPEZ-BARAJAS S, SANZ P J, MARÍN-PRADES R, et al. Inspection operations and hole detection in fish net cages through a hybrid underwater intervention system using deep learning techniques[J]. Journal of marine science and engineering, 2023, 12(1): ID 80.
|