1 |
隋虹均, 宋戈, 高佳. 东北黑土区典型地域耕地生态退化时空分异: 以富锦市为例[J]. 自然资源学报, 2022, 37(9): 2277-2291.
|
|
SUI H J, SONG G, GAO J. Spatio-temporal differentiation of cultivated land ecological degradation in typical black soil regions of Northeast China: A case study of Fujin city[J]. Journal of natural resources, 2022, 37(9): 2277-2291.
|
2 |
张露, 罗必良. 贸易风险、农产品竞争与国家农业安全观重构[J]. 改革, 2020(5): 25-33.
|
|
ZHANG L, LUO B L. Trade risk, agricultural product competition and reconstruction of China's agricultural safety concept[J]. Reform, 2020(5): 25-33.
|
3 |
JAYA BRINDHA G, GOPI E S. Maximizing profits in crop planning using socio evolution and learning optimization[M]// Socio-cultural Inspired Metaheuristics. Singapore: Springer Singapore, 2019: 151-174.
|
4 |
CID-GARCIA N M, IBARRA-ROJAS O J. An integrated approach for the rectangular delineation of management zones and the crop planning problems[J]. Computers and electronics in agriculture, 2019, 164: ID 104925.
|
5 |
DEO A, SAWANT N, ARORA A, et al. How has scientific literature addressed crop planning at farm level: A bibliometric-qualitative review[J]. Farming system, 2025, 3(2): ID 100139.
|
6 |
JAIN R, MALANGMEIH L, RAJU S S, et al. Optimization techniques for crop planning: A review[J]. The Indian journal of agricultural sciences, 2018, 88(12): 1826-1835.
|
7 |
GALÁN-MARTÍN Á, POZO C, GUILLÉN-GOSÁLBEZ G, et al. Multi-stage linear programming model for optimizing cropping plan decisions under the new Common Agricultural Policy[J]. Land use policy, 2015, 48: 515-524.
|
8 |
张帆, 郭萍, 李茉. 基于双区间两阶段随机规划的黑河中游主要农作物种植结构优化[J]. 中国农业大学学报, 2016, 21(11): 109-116.
|
|
ZHANG F, GUO P, LI M. Planting structure optimization of main crops in the middle reaches of Heihe River basin on dual interval two stage stochastic programming[J]. Journal of China agricultural university, 2016, 21(11): 109-116.
|
9 |
李睿环, 郭萍. 黑河中游种植结构优化的双层多目标规划模型[J]. 中国科技论文, 2017, 12(7): 733-737.
|
|
LI R H, GUO P. Optimization of bi-level multi-objective planning model for cropping structures in the middle reaches of Heihe River basin[J]. China sciencepaper, 2017, 12(7): 733-737.
|
10 |
NAJAFABADI M M, ZIAEE S, NIKOUEI A, et al. Mathematical programming model (MMP) for optimization of regional cropping patterns decisions: A case study[J]. Agricultural systems, 2019, 173: 218-232.
|
11 |
冯德鸿, 党学凤. 基于GIS规划模型的药材种植效益问题研究: 以甘肃省定西市陇西县为例[J]. 安徽农业科学, 2020, 48(23): 21-22, 47.
|
|
FENG D H, DANG X F. Research on benefit of medicinal material planting based on GIS planning model: Taking Longxi County, Dingxi City, Gansu Province as an example[J]. Journal of Anhui agricultural sciences, 2020, 48(23): 21-22, 47.
|
12 |
BANDYOPADHYAY K K, SAHOO R N, SINGH R, et al. Characterization and crop planning of rabi fallows using remote sensing and GIS[J]. Current science, 2015, 108(11): 2051-2062.
|
13 |
王璐, 杜雄, 王荣, 等. 基于NSGA-Ⅱ算法的白洋淀上游种植结构优化[J]. 中国生态农业学报(中英文), 2021, 29(8): 1370-1383.
|
|
WANG L, DU X, WANG R, et al. Optimization of the planting structure in the upstream region of Baiyangdian Lake based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ)[J]. Chinese journal of eco-agriculture, 2021, 29(8): 1370-1383.
|
14 |
罗丹, 蒋兵兵. 一种求解番茄种植规划问题的多目标粒子群-生物地理学优化算法[J]. 计算机应用与软件, 2023, 40(7): 294-299.
|
|
LUO D, JIANG B B. A multi-objective biogeography-based optimization with particle swarm optimization for solving tomato planning planting[J]. Computer applications and software, 2023, 40(7): 294-299.
|
15 |
GHASEMI M M, KARAMOUZ M, SHUI L T. Farm-based cropping pattern optimization and conjunctive use planning using piece-wise genetic algorithm (PWGA): A case study[J]. Modeling earth systems and environment, 2016, 2(1): ID 25.
|
16 |
XIE Y W, WANG W Y, LAN T Y. Optimizing crop planting plans based on genetic algorithms[J]. Journal of computer science and electrical engineering, 2025, 7(1): 27-32.
|
17 |
富锦市农业农村局. 富锦市 夯实发展基础 提升粮食产能[J]. 中国农业综合开发, 2020(8): 30-31.
|
18 |
王滨. 走进“北国粮都”富锦[J]. 黑龙江粮食, 2016(10): 44-47.
|
19 |
吴禹瑨, 李禹萱, 宋茜, 等. 基于迁移学习的嫩江市主要农作物遥感分类[J]. 中国农业信息, 2023, 35(4): 1-10.
|
|
WU Y J, LI Y X, SONG Q, et al. Remote sensing classification of main crops in Nenjiang City based on transfer learning[J]. China agricultural informatics, 2023, 35(4): 1-10.
|
20 |
SOLANKI M K, WANG F Y, WANG Z, et al. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems[J]. Journal of soils and sediments, 2019, 19(4): 1911-1927.
|
21 |
提俊阳, 张玉芹, 杨恒山, 等. 玉米—大豆轮作对土壤肥力及其产量影响的研究进展[J]. 内蒙古民族大学学报(自然科学版), 2022, 37(2): 156-160.
|
|
TI J Y, ZHANG Y Q, YANG H S, et al. Research progress on effects of maize-soybean rotation on soil fertility and yield[J]. Journal of Inner Mongolia minzu university (natural sciences), 2022, 37(2): 156-160.
|
22 |
SHAH K K, MODI B, PANDEY H P, et al. Diversified crop rotation: an approach for sustainable agriculture production[J]. Advances in agriculture, 2021, 2021(1): ID 8924087.
|
23 |
吴杨潇影, 姜振辉, 杨京平, 等. 玉米-水稻轮作和水稻连作土壤根际和非根际氮含量及酶活性[J]. 植物营养与肥料学报, 2019, 25(4): 535-543.
|
|
WU Y, JIANG Z H, YANG J P, et al. Nitrogen content and enzyme activity in rhizosphere and non-rhizosphere soils of paddy field under maize-rice rotation and rice continuous mono-cropping[J]. Journal of plant nutrition and fertilizers, 2019, 25(4): 535-543.
|
24 |
冯雪婉, 李翠兰, 彭畅, 等. 玉米—大豆轮作体系对黑土土壤固氮菌群落结构及其质量的影响[J]. 自然资源学报, 2022, 37(9): 2319-2333.
|
|
FENG X W, LI C L, PENG C, et al. Effects of corn-soybean rotation system on soil nitrogen-fixing bacteria community structure and quality in black soil[J]. Journal of natural resources, 2022, 37(9): 2319-2333.
|
25 |
LAMBORA A, GUPTA K, CHOPRA K. Genetic algorithm- a literature review[C]// 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). Piscataway, New Jersey, USA: IEEE, 2019: 380-384.
|
26 |
SHIELDS M D, ZHANG J X. The generalization of Latin hypercube sampling[J]. Reliability engineering & system safety, 2016, 148: 96-108.
|