[1] |
KALMPOURTZIDOU A, EILANDER A, TALSMA E F. Global vegetable intake and supply compared to recommendations: A systematic review[J]. Nutrients, 2020, 12(6): ID 1558.
|
[2] |
DONG J L, GRUDA N, LI X, et al. Global vegetable supply towards sustainable food production and a healthy diet[J]. Journal of cleaner production, 2022, 369: ID 133212.
|
[3] |
BANCAL V, RAY R C. Overview of food loss and waste in fruits and vegetables: From issue to resources[M]. Fruits and vegetable wastes: Valorization to bioproducts and platform chemicals. Singapore: Springer. 2022.
|
[4] |
FAO. World food and agriculture–statistical yearbook 2024 [M]. Rome, Italy: FAO, 2024.
|
[5] |
田婷, 张青, 徐雯. 光谱技术在作物养分监测中的应用研究进展[J]. 江苏农业科学, 2024, 52(14): 31-39.
|
|
TIAN T, ZHANG Qing, XU Wen. Research progress on application of spectral technology in crop nutrient monitoring[J]. Jiangsu agricultural sciences, 2024, 52(14): 31-39.
|
[6] |
SI W, XIONG J, HUANG Y P, et al. Quality assessment of fruits and vegetables based on spatially resolved spectroscopy: A review[J]. Foods, 2022, 11(9): ID 1198.
|
[7] |
康超, 于垂统, 辛全伟. 蔬菜农药残留检测中光谱技术的应用现状与对策探讨[J]. 食品安全导刊, 2025(2): 183-185, 189.
|
|
KANG C, YU C T, XIN Q W. Application status and countermeasures of spectral technology in vegetable pesticide residue detection[J]. China food safety magazine, 2025(2): 183-185, 189.
|
[8] |
邵晨阳, 赵一墨, 鹿莉莉, 等. 近红外光谱快速分析技术的应用研究进展[J]. 化学通报, 2024, 87(8): 898-912.
|
|
SHAO C Y, ZHAO Y M, LU L L, et al. Progress in the application of near-infrared spectroscopy for rapid analysis[J]. Chemistry, 2024, 87(8): 898-912.
|
[9] |
王国栋, 褚刚, 刘俊伟, 等. 蔬菜中农药残留智能检测技术比较研究[J]. 智慧农业导刊, 2023, 3(23): 15-18.
|
|
WANG G D, CHU G, LIU J W, et al. Comprehensive evaluation and comparison of intelligent detection techniques for pesticide residues in vegetables[J]. Journal of smart agriculture, 2023, 3(23): 15-18.
|
[10] |
NICOLAÏ B M, BEULLENS K, BOBELYN E, et al. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review[J]. Postharvest biology and technology, 2007, 46(2): 99-118.
|
[11] |
YANG Z Y, ALBROW-OWEN T, CAI W W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371(6528): ID eabe0722.
|
[12] |
XUE Q, YANG Y, MA W K, et al. Advances in miniaturized computational spectrometers[J]. Advanced science, 2024, 11(47): ID 2404448.
|
[13] |
郭旺, 杨雨森, 吴华瑞, 等. 农业大模型: 关键技术、应用分析与发展方向[J]. 智慧农业(中英文), 2024, 6(2): 1-13.
|
|
GUO W, YANG Y S, WU H R, et al. Big models in agriculture: Key technologies, application and future directions[J]. Smart agriculture, 2024, 6(2): 1-13.
|
[14] |
SUN D, CRUZ J, ALCALÀ M, et al. Near infrared spectroscopy determination of chemical and sensory properties in tomato[J]. Journal of near infrared spectroscopy, 2021, 29(5): 289-300.
|
[15] |
PAYNE W Z, KUROUSKI D. Raman-based diagnostics of biotic and abiotic stresses in plants. a review[J]. Frontiers in plant science, 2020, 11: ID 616672.
|
[16] |
隋媛媛, 王庆钰, 于海业. 基于叶绿素荧光光谱指数的温室黄瓜病害预测[J]. 光谱学与光谱分析, 2016, 36(6): 1779-1782.
|
|
SUI Y Y, WANG Q Y, YU H Y. Prediction of greenhouse cucumber disease based on chlorophyll fluorescence spectrum index[J]. Spectroscopy and spectral analysis, 2016, 36(6): 1779-1782.
|
[17] |
TREBOLAZABALA J, MAGUREGUI M, MORILLAS H, et al. Portable Raman spectroscopy for an in situ monitoring the ripening of tomato (Solanum lycopersicum) fruits[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2017, 180: 138-143.
|
[18] |
孙俊, 周鑫, 毛罕平, 等. 基于荧光光谱的生菜农药残留检测[J]. 农业工程学报, 2016, 32(19): 302-307.
|
|
SUN J, ZHOU X, MAO H P, et al. Detection of pesticide residues in lettuce based on fluorescence spectra[J]. Transactions of the Chinese society of agricultural engineering, 2016, 32(19): 302-307.
|
[19] |
SLAVOVA V. Application of mobile fluorescence spectroscopy as a method for the analysis of representatives of different varieties of carrots (Daucus carota) during storage under uncontrolled conditions[J]. Bulgarian chemical communications, 2024, 56(1): 14-18.
|
[20] |
ALEGBE P J, APPIAH-BREMPONG M, AWUAH E. Heavy metal contamination in vegetables and associated health risks[J]. Scientific African, 2025, 27: ID e02603.
|
[21] |
AFTAB K, IQBAL S, KHAN M R, et al. Wastewater-irrigated vegetables are a significant source of heavy metal contaminants: Toxicity and health risks[J]. Molecules, 2023, 28(3): ID 1371.
|
[22] |
BEĆ K B, GRABSKA J, HUCK C W. Principles and applications of miniaturized near-infrared (NIR) spectrometers[J]. Chemistry-a European journal, 2021, 27(5): 1514-1532.
|
[23] |
PANDISELVAM R, PRITHVIRAJ V, MANIKANTAN M R, et al. Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review[J]. Frontiers in nutrition, 2022, 9: ID 973457.
|
[24] |
ZAHIR S A D M, OMAR A F, JAMLOS M F, et al. A review of visible and near-infrared (Vis-NIR) spectroscopy application in plant stress detection[J]. Sensors and actuators A: physical, 2022, 338: ID 113468.
|
[25] |
薛舒丹, 谢大森, 万小童, 等. 近红外光谱分析技术在蔬菜品质检测中的应用研究进展[J]. 广东农业科学, 2021, 48(9): 142-150.
|
|
XUE S D, XIE D S, WAN X T, et al. Research progress in application of near infrared reflectance spectroscopy in vegetable quality detection[J]. Guangdong agricultural sciences, 2021, 48(9): 142-150.
|
[26] |
韩霜霜, 张平平, 童未名, 等. 近红外光谱分析技术在五类蔬菜理化特性分析中的应用[J]. 安徽农业科学, 2018, 46(32): 14-16, 23.
|
|
HAN S S, ZHANG P P, TONG W M, et al. Application of near-infrared spectroscopy in analysis of physical and chemical properties on five kinds of vegetables[J]. Journal of Anhui agricultural sciences, 2018, 46(32): 14-16, 23.
|
[27] |
陈蕊, 张骏, 李晓龙. 蔬菜表面农药残留可见-近红外光谱探测与分类识别研究[J]. 光谱学与光谱分析, 2012, 32(5): 1230-1233.
|
|
CHEN R, ZHANG J, LI X L. Study on the detection and pattern classification of pesticide residual on vegetable surface by using visible/near-infrared spectroscopy[J]. Spectroscopy and spectral analysis, 2012, 32(5): 1230-1233.
|
[28] |
MA F, DU C W, ZHENG S L, et al. In situ monitoring of nitrate content in leafy vegetables using attenuated total Reflectance - Fourier-transform mid-infrared spectroscopy coupled with machine learning algorithm[J]. Food analytical methods, 2021, 14(11): 2237-2248.
|
[29] |
KUSUMIYATI, HADIWIJAYA Y, PUTRI I E, et al. Multi-product calibration model for soluble solids and water content quantification in Cucurbitaceae family, using visible/near-infrared spectroscopy[J]. Heliyon, 2021, 7(8): ID e07677.
|
[30] |
BORBA K R, AYKAS D P, MILANI M I, et al. Portable near infrared spectroscopy as a tool for fresh tomato quality control analysis in the field[J]. Applied sciences, 2021, 11(7): ID 3209.
|
[31] |
DAI Y, FENG X Y, HAN P, et al. Application of near infrared spectrum analysis technique in pesticide residues detection of fruits and vegetables[J]. Journal of Food Safety and Quality, 2014, 5(3): 658-664.
|
[32] |
SINDHU S, MANICKAVASAGAN A. Nondestructive testing methods for pesticide residue in food commodities: A review[J]. Comprehensive reviews in food science and food safety, 2023, 22(2): 1226-1256.
|
[33] |
ZHANG M Y, XUE J X, LI Y D, et al. Non-destructive detection and recognition of pesticide residue levels on cauliflowers using visible/near-infrared spectroscopy combined with chemometrics[J]. Journal of food science, 2023, 88(10): 4327-4342.
|
[34] |
李春雨, 葛啸, 金燕婷, 等. 基于近红外光谱技术的蔬菜农药残留种类检测[J]. 农业工程, 2019, 9(6): 33-39.
|
|
LI C Y, GE X, JIN Y T, et al. Detection of pesticide residues in vegetables based on near-infrared spectroscopy[J]. Agricultural engineering, 2019, 9(6): 33-39.
|
[35] |
李敏. 基于近红外光谱技术的小白菜农药残留鉴别分析[J]. 红外, 2020, 41(10): 44-47.
|
|
LI M. Identification and analysis of pesticide residues in Chinese cabbage based on near infrared spectroscopy technology[J]. Infrared, 2020, 41(10): 44-47.
|
[36] |
DE BRITO A A, CAMPOS F, DOS REIS NASCIMENTO A, et al. Determination of soluble solid content in market tomatoes using near-infrared spectroscopy[J]. Food control, 2021, 126: ID 108068.
|
[37] |
钟梅英. 蔬菜抗生素与微塑料检测方法及食品质量检测平台研发[D]. 无锡: 江南大学, 2022.
|
|
ZHONG M Y. Antibioticsandmicroplastics detection method for vegetable and a system for food quality detection[D]. Wuxi: Jiangnan University, 2022.
|
[38] |
DE OLIVEIRA D M, FONTES L M, PASQUINI C. Comparing laser induced breakdown spectroscopy, near infrared spectroscopy, and their integration for simultaneous multi-elemental determination of micro- and macronutrients in vegetable samples[J]. Analytica chimica acta, 2019, 1062: 28-36.
|
[39] |
REDHA AALI, TORQUATI L, LANGSTON F, et al. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: a systematic review[J]. Critical reviews in food science and nutrition, 2024, 64(23): 8248-8264.
|
[40] |
SALETNIK A, SALETNIK B, PUCHALSKI C. Overview of popular techniques of Raman spectroscopy and their potential in the study of plant tissues[J]. Molecules, 2021, 26(6): ID 1537.
|
[41] |
SALETNIK A, SALETNIK B, PUCHALSKI C. Raman method in identification of species and varieties, assessment of plant maturity and crop quality: a review[J]. Molecules, 2022, 27(14): ID 4454.
|
[42] |
KOLAŠINAC S M, PEĆINAR I, GAJIĆ R, et al. Raman spectroscopy in the characterization of food carotenoids: Challenges and prospects[J]. Foods, 2025, 14(6): ID 953.
|
[43] |
AGARWAL U P, RALPH S A, BAEZ C, et al. Detection and quantitation of cellulose II by Raman spectroscopy[J]. Cellulose, 2021, 28(14): 9069-9079.
|
[44] |
WANG P X, LI X, SUN Y, et al. Rapid and reliable detection and quantification of organophosphorus pesticides using SERS combined with dispersive liquid-liquid microextraction[J]. Analytical methods, 2022, 14(45): 4680-4689.
|
[45] |
XU S, HUANG X M, LU H Z. Advancements and applications of Raman spectroscopy in rapid quality and safety detection of fruits and vegetables[J]. Horticulturae, 2023, 9(7): ID 843.
|
[46] |
PAYNE W Z, KUROUSKI D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: A review[J]. Plant methods, 2021, 17(1): ID 78.
|
[47] |
LEGNER R, VOIGT M, SERVATIUS C, et al. A four-level maturity index for hot peppers (Capsicum annum) using non-invasive automated mobile Raman spectroscopy for on-site testing[J]. Applied sciences, 2021, 11(4): ID 1614.
|
[48] |
ZHANG D, LIANG P, CHEN W W, et al. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy[J]. Microchimica acta, 2021, 188(11): ID 370.
|
[49] |
SNG B J R, SINGH G P, VAN VU K, et al. Rapid metabolite response in leaf blade and petiole as a marker for shade avoidance syndrome[J]. Plant methods, 2020, 16: ID 144.
|
[50] |
VALLEJO PÉREZ M R, CETINA DENIS J J, CHAN LEY M A, et al. Early plant disease detection by Raman spectroscopy: An open-source software designed for the automation of preprocessing and analysis of spectral dataset[J]. Crop protection, 2025, 188: ID 107003.
|
[51] |
HUANG C H, SINGH G P, PARK S H, et al. Early diagnosis and management of nitrogen deficiency in plants utilizing Raman spectroscopy[J]. Frontiers in plant science, 2020, 11: ID 663.
|
[52] |
GUPTA S, HUANG C H, SINGH G P, et al. Portable Raman leaf-clip sensor for rapid detection of plant stress[J]. Scientific reports, 2020, 10(1): ID 20206.
|
[53] |
ALTANGEREL N, ARIUNBOLD G O, GORMAN C, et al. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy[J]. Proceedings of the national academy of sciences of the United States of America, 2017, 114(13): 3393-3396.
|
[54] |
SANCHEZ L, ERMOLENKOV A, TANG X T, et al. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer[J]. Planta, 2020, 251(3): ID 64.
|
[55] |
ORECCHIO C, SACCO BOTTO C, ALLADIO E, et al. Non-invasive and early detection of tomato spotted wilt virus infection in tomato plants using a hand-held Raman spectrometer and machine learning modelling[J]. Plant stress, 2025, 15: ID 100732.
|
[56] |
DHANANI T, DOU T Y, BIRADAR K, et al. Raman spectroscopy detects changes in carotenoids on the surface of watermelon fruits during maturation[J]. Frontiers in plant science, 2022, 13: ID 832522.
|
[57] |
SAH G K, GOFF N, SINGH J, et al. Nondestructive assessment of maturity in cantaloupe using Raman spectroscopy with carotenoids as biomarkers[J]. Food chemistry advances, 2024, 4: ID 100698.
|
[58] |
AKPOLAT H, BARINEAU M, JACKSON K A, et al. High-throughput phenotyping approach for screening major carotenoids of tomato by handheld Raman spectroscopy using chemometric methods[J]. Sensors, 2020, 20(13): ID 3723.
|
[59] |
YI X, YUAN Z S, YU X, et al. Novel microneedle patch-based surface-enhanced Raman spectroscopy sensor for the detection of pesticide residues[J]. ACS applied materials & interfaces, 2023, 15(4): 4873-4882.
|
[60] |
YE C, HE M, ZHU Z D, et al. A portable SERS sensing platform for the multiplex identification and quantification of pesticide residues on plant leaves[J]. Journal of materials chemistry C, 2022, 10(36): 12966-12974.
|
[61] |
GONG X Y, TANG M, GONG Z J, et al. Screening pesticide residues on fruit peels using portable Raman spectrometer combined with adhesive tape sampling[J]. Food chemistry, 2019, 295: 254-258.
|
[62] |
KITAHAMA Y, PANCORBO P M, SEGAWA H, et al. Place & Play SERS: Sample collection and preparation-free surface-enhanced Raman spectroscopy[J]. Analytical methods, 2023, 15(8): 1028-1036.
|
[63] |
KESAVA RAO V, TANG X K, SEKINE Y, et al. An ultralow-cost, durable, flexible substrate for ultrabroadband surface-enhanced Raman spectroscopy[J]. Advanced photonics research, 2024, 5(3): ID 2300291.
|
[64] |
ZHU J J, SHARMA A S, XU J, et al. Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2021, 246: ID 118994.
|
[65] |
YANG T X, ZHAO B, KINCHLA A J, et al. Investigation of pesticide penetration and persistence on harvested and live basil leaves using surface-enhanced Raman scattering mapping[J]. Journal of agricultural and food chemistry, 2017, 65(17): 3541-3550.
|
[66] |
YANG T X, DOHERTY J, GUO H Y, et al. Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy[J]. Analytical chemistry, 2019, 91(3): 2093-2099.
|
[67] |
黄双根, 王晓, 吴燕, 等. SERS技术的小白菜中西维因农药残留检测[J]. 光谱学与光谱分析, 2019, 39(1): 130-136.
|
|
HUANG S G, WANG X, WU Y, et al. Study of rapid detection of carbaryl pesticide residues in pakchoi based on SERS technology[J]. Spectroscopy and spectral analysis, 2019, 39(1): 130-136.
|
[68] |
周玮, 夏婧竹, 吴蓉, 等. 基于拉曼光谱技术快速检测叶菜类蔬菜中噻虫嗪残留的方法[J]. 中国食品卫生杂志, 2023, 35(1): 27-31.
|
|
ZHOU W, XIA J Z, WU R, et al. Rapid determination of thiamethoxam residues in leafy vegetables based on Raman spectroscopy[J]. Chinese journal of food hygiene, 2023, 35(1): 27-31.
|
[69] |
CROCOMBE R A, KAMMRATH B W, LEARY P E. Portable Raman spectrometers: How small can they get?[J]. Spectroscopy, 2023: 32-40.
|
[70] |
KIM U J, LEE S, KIM H, et al. Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer[J]. Nature communications, 2023, 14(1): ID 5262.
|
[71] |
MU T T, LI S, FENG H H, et al. High-sensitive smartphone-based Raman system based on cloud network architecture[J]. Ieee journal of selected topics in quantum electronics, 2019, 25(1): ID 7200306.
|
[72] |
高振, 赵春江, 杨桂燕, 等. 典型拉曼光谱技术及其在农业检测中应用研究进展[J]. 智慧农业(中英文), 2022, 4 (2): 121-134.
|
|
GAO Z, ZHAO C J, YANG G Y, et al. Typical raman spectroscopy ttechnology and research progress in agriculture detection[J]. Smart Agriculture, 2022, 4(2): 121-134.
|
[73] |
ALBANI J R. Principles and Applications of Fluorescence Spectroscopy[M]. New York: John Wiley & Sons, 2007.
|
[74] |
SINESHCHEKOV V A. Applications of fluorescence spectroscopy in the investigation of plant phytochrome in vivo [J]. Plant physiology and biochemistry, 2024, 208: ID 108434.
|
[75] |
SLAVOVA V. Application of fluorescence spectroscopy as a field method in the determination of varietal differences radish (Raphanus sativus) accessions after harvesting[J]. Acta agriculturae Slovenica, 2024, 120(3): 1- 5.
|
[76] |
SLAVOVA V. Application of mobile fluorescence spectroscopy as a method in the determination of varietal differences in black radish (Raphanus sativus L. var. Niger) during storage under uncontrolled conditions[J]. Bulgarian chemical communications, 2024, 61 (2): 47-52.
|
[77] |
SLAVOVA V. Application of mobile fluorescence spectroscopy in determination of varietal differences in Spinach (Spinacia oleracea L.)[J]. Agricultural science and technology, 2024, 16(1): 36-43.
|
[78] |
ROPELEWSKA E, SABANCI K, SLAVOVA V, et al. The classification of leek seeds based on fluorescence spectroscopic data using machine learning[J]. European food research and technology, 2023, 249(12): 3217-3226.
|
[79] |
SABANCI K, ASLAN M F, SLAVOVA V, et al. The use of fluorescence spectroscopic data and machine-learning algorithms to discriminate red onion cultivar and breeding line[J]. Agriculture, 2022, 12(10): ID 1652.
|
[80] |
MASHEVA V, SLAVOVA V. Application of fluorescence spectroscopy as a field method in the determination of varietal differences after tomato harvesting[J]. Acta agriculturae slovenica, 2023, 119(4): 1-5.
|
[81] |
SLAVOVA V, ROPELEWSKA E, SABANCI K. The application of fluorescence spectroscopy and machine learning as non-destructive approach to distinguish two different varieties of greenhouse tomatoes[J]. European food research and technology, 2023, 249(12): 3239-3245.
|
[82] |
王琳琳, 于海业, 张蕾, 等. 基于叶绿素荧光光谱的生菜硝酸盐含量检测[J]. 农业工程学报, 2016, 32(14): 279-283.
|
|
WANG L L, YU H Y, ZHANG L, et al. Detection of nitrate content in lettuce based on chlorophyll fluorescence spectrum[J]. Transactions of the Chinese society of agricultural engineering, 2016, 32(14): 279-283.
|
[83] |
徐际童, 金海榕, 佟文玉, 等. 近红外光谱与荧光光谱对比的黄瓜白粉病分割与检测[J]. 光谱学与光谱分析, 2023, 43(6): 1731-1738.
|
|
XU J T, JIN H R, TONG W Y, et al. Segmentation and detection of cucumber powdery mildew by comparison of near-infrared and fluorescence spectra[J]. Spectroscopy and spectral analysis, 2023, 43(6): 1731-1738.
|
[84] |
刘翠玲, 李佳琮, 孙晓荣, 等. 基于荧光光谱结合宽度学习的白菜农药残留量检测方法[J]. 农业机械学报, 2023, 54(10): 198-204.
|
|
LIU C L, LI J C, SUN X R, et al. Detection of pesticide residues in cabbage based on fluorescence spectroscopy combined with broad learning[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(10): 198-204.
|
[85] |
陈珏, 李佳琮, 刘翠玲, 等. 荧光光谱技术结合机器学习算法检测大白菜中吡虫啉含量[J]. 食品安全质量检测学报, 2023, 14(13): 134-140.
|
|
CHEN J, LI J C, LIU C L, et al. Determination of imidacloprid in cabbage by fluorescence spectroscopy combined with machine learning algorithms[J]. Journal of food safety & quality, 2023, 14(13): 134-140.
|
[86] |
秦艺洋, 黎少财, 张汉, 等. 基于荧光光谱技术的蔬菜表面西维因农药残留检测[J]. 天津农学院学报, 2024, 31(6): 79-84.
|
|
QIN Y Y, LI S C, ZHANG H, et al. Detection of carbaryl pesticide residues on vegetable surface based on fluorescence spectroscopy[J]. Journal of Tianjin agricultural university, 2024, 31(6): 79-84.
|
[87] |
王晓燕, 蒋喆臻, 冯小涛, 等. 基于同步荧光与支持向量回归的典型蔬菜农药残留快速检测[J]. 分析试验室, 2023, 42(12): 1571-1575.
|
|
WANG X Y, JIANG Z Z, FENG X T, et al. Rapid detection of pesticide residues in typical vegetable based on synchronous fluorescence and support vector regression[J]. Chinese journal of analysis laboratory, 2023, 42(12): 1571-1575.
|
[88] |
SINGH V K. Review: Application of LIBS to elemental analysis and mapping of plant samples[J]. Atomic spectroscopy, 2021, 42(1): 99-113.
|
[89] |
REN J, ZHAO Y R, YU K Q. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops[J]. Computers and electronics in agriculture, 2022, 197: ID 106986.
|
[90] |
王彩虹, 黄林, 杨晖, 等. 蔬菜中Ca含量的LIBS快速检测研究[J]. 江西农业大学学报, 2016, 38(3): 483-487.
|
|
WANG C H, HUANG L, YANG H, et al. Rapid detection of Ca in vegetables by LIBS[J]. Acta agriculturae universitatis jiangxiensis, 2016, 38(3): 483-487.
|
[91] |
孙仲谋, 陈宇, 万恩来, 等. 基于激光诱导击穿光谱的洋葱在线原位检测[J]. 原子与分子物理学报, 2022, 39(3): 92-97.
|
|
SUN Z M, CHEN Y, WAN E L, et al. Online in situ detection of onion by laser-induced breakdown spectroscopy[J]. Journal of atomic and molecular physics, 2022, 39(3): 92-97.
|
[92] |
黎文兵, 刘木华, 黄林, 等. 激光诱导击穿光谱对蕹菜中Pb元素定量分析研究[J]. 激光与光电子学进展, 2014, 51(9): 224-229.
|
|
LI W B, LIU M H, HUANG L, et al. Quantitative analysis of Pb in Ipomoea aquatica by laser-induced breakdown spectroscopy[J]. Laser & optoelectronics progress, 2014, 51(9): 224-229.
|
[93] |
杨晖, 黄林, 刘木华, 等. 激光诱导击穿光谱检测青菜中镉元素的多变量筛选研究[J]. 分析化学, 2017, 45(2): 238-244.
|
|
YANG H, HUANG L, LIU M H, et al. Detection of Cd in Chinese cabbage by laser induced breakdown spectroscopy coupled with multivariable selection[J]. Chinese journal of analytical chemistry, 2017, 45(2): 238-244.
|
[94] |
杨晖, 黄林, 陈添兵, 等. 光谱滤波法提高激光诱导击穿光谱对蔬菜中元素Pb的检测精度[J]. 分析化学, 2017, 45(8): 1123-1128.
|
|
YANG H, HUANG L, CHEN T B, et al. Spectral filtering method for improvement of detection accuracy of lead in vegetables by laser induced breakdown spectroscopy[J]. Chinese journal of analytical chemistry, 2017, 45(8): 1123-1128.
|
[95] |
潘国璋, 黄一波. 紫外可见吸收光谱法测定蔬菜中亚硝酸盐含量[J]. 天津化工, 2009, 23(1): 59-60.
|
|
PAN G Z, HUANG Y B. The determination of nitrate in the boiled vegetables by Uv-vis spectroscopy[J]. Tianjin chemical industry, 2009, 23(1): 59-60.
|
[96] |
赵佩瑾, 槐玉枝, 刘嘉坤. 紫外-可见分光光度法测定蔬菜的抗氧化活性[J]. 食品与药品, 2011, 13(1): 52-54.
|
|
ZHAO P J, HUAI Y Z, LIU J K. Determination of antioxidant activity of vegetables by UV-vis spectrophotometry[J]. Food and drug, 2011, 13(1): 52-54.
|
[97] |
叶旭君, OshitaSeiichi, MakinoYoshio, 等. 基于紫外-可见-近红外光谱技术的蔬菜细胞ATP含量无损检测研究[J]. 光谱学与光谱分析, 2012, 32(4): 978-981.
|
|
YE X J, OSHITA S, MAKINO Y, et al. Nondestructive measurement of cellular ATP contents in vegetables using UV-vis-NIR spectroscopy[J]. Spectroscopy and spectral analysis, 2012, 32(4): 978-981.
|
[98] |
LI A, YAO C H, XIA J F, et al. Advances in cost-effective integrated spectrometers[J]. Light, science & applications, 2022, 11(1): ID 174.
|
[99] |
LUO R H, POPP J, BOCKLITZ T. Deep learning for Raman spectroscopy: A review[J]. Analytica, 2022, 3(3): 287-301.
|
[100] |
ZHANG X L, YANG J, LIN T, et al. Food and agro-product quality evaluation based on spectroscopy and deep learning: A review[J]. Trends in food science & technology, 2021, 112: 431-441.
|
[101] |
LI X L, LI Z X, YANG X F, et al. Boosting the generalization ability of Vis-NIR-spectroscopy-based regression models through dimension reduction and transfer learning[J]. Computers and electronics in agriculture, 2021, 186: ID 106157.
|
[102] |
DENG J H, MEI C L, JIANG H. Enhancing the application of near-infrared spectroscopy in grain mycotoxin detection: An exploration of a transfer learning approach across contaminants and grains[J]. Food chemistry, 2025, 480: ID 143854.
|
[103] |
SON W K, CHOI Y S, HAN Y W, et al. In vivo surface-enhanced Raman scattering nanosensor for the real-time monitoring of multiple stress signalling molecules in plants[J]. Nature nanotechnology, 2023, 18(2): 205-216.
|
[104] |
GUO Z M, WU X C, JAYAN H, et al. Recent developments and applications of surface enhanced Raman scattering spectroscopy in safety detection of fruits and vegetables[J]. Food chemistry, 2024, 434: ID 137469.
|