[1] |
常汉. 水心病苹果水心程度与可溶性固形物含量在线无损检测方法与分级装备研究[D]. 杭州: 浙江大学, 2021.
|
|
CHANG H. Research and development of on-line non-destructive detecting method and grading equipment of apple watercore and soluble solids content[D]. Hangzhou: Zhejiang University, 2021.
|
[2] |
王菁菁. 新疆红旗坡苹果品牌建设调查研究[D]. 石河子: 石河子大学, 2022.
|
|
WANG J J. Investigation on Apple brand construction in hongqipo, Xinjiang[D]. Shihezi: Shihezi University, 2022.
|
[3] |
姜云斌, 王志华, 贾朝爽. 苹果水心病的发病机理研究进展[J]. 中国果树, 2022(1): 8-14.
|
|
JIANG Y B, WANG Z H, JIA C S. Research progress on pathogenesis of watercore in apple[J]. China fruits, 2022(1): 8-14.
|
[4] |
GUO Z M, WANG M M, AGYEKUM A A, et al. Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy[J]. Journal of food engineering, 2020, 279: ID 109955.
|
[5] |
CHANG H, YIN J F, TIAN H, et al. Evaluation of the optical layout and sample size on online detection of apple watercore and SSC using Vis/NIR spectroscopy[J]. Journal of food composition and analysis, 2023, 123: ID 105528.
|
[6] |
张思旭, 徐焕良, 王江波, 等. 基于光学特性参数反演的苹果水心病检测[J]. 南京农业大学学报, 2023, 46(5): 986-994.
|
|
ZHANG S X, XU H L, WANG J B, et al. Detection of watercore disease in apple based on inversion of optical characteristic parameters[J]. Journal of Nanjing Agricultural University, 2023, 46(5): 986-994.
|
[7] |
郭俊先, 马永杰, 田海清, 等. 基于高光谱反透射图像的新疆冰糖心红富士水心鉴别[J]. 食品科学, 2020, 41(6): 278-284.
|
|
GUO J X, MA Y J, TIAN H Q, et al. Identification of watercore in Xinjiang-grown fuji apples based on reflection-transmission hyperspectral imaging[J]. Food science, 2020, 41(6): 278-284.
|
[8] |
MA T, LI X Z, INAGAKI T, et al. Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging[J]. Journal of food engineering, 2018, 224: 53-61.
|
[9] |
FAN S X, ZHANG B H, LI J B, et al. Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data[J]. Postharvest biology and technology, 2016, 121: 51-61.
|
[10] |
CHANG H, WU Q F, TIAN H, et al. Non-destructive identification of internal watercore in apples based on online vis/NIR spectroscopy[J]. Transactions of the asabe, 2020, 63(6): 1711-1721.
|
[11] |
郭志明, 郭闯, 王明明, 等. 果蔬品质安全近红外光谱无损检测研究进展[J]. 食品安全质量检测学报, 2019, 10(24): 8280-8288.
|
|
GUO Z M, GUO C, WANG M M, et al. Research advances in nondestructive detection of fruit and vegetable quality and safety by near infrared spectroscopy[J]. Journal of food safety & quality, 2019, 10(24): 8280-8288.
|
[12] |
WOOD R M, SCHUT D E, BALK P A, et al. Assessing the development of internal disorders in pome fruit with X-ray CT before, during and after controlled atmosphere storage and shelf life[J]. Food control, 2025, 168: ID 110970.
|
[13] |
张丽娟, 夏其乐, 陈剑兵, 等. 近红外光谱的三种蓝莓果渣花色苷含量测定[J]. 光谱学与光谱分析, 2020, 40(7): 2246-2252.
|
|
ZHANG L J, XIA Q L, CHEN J B, et al. Prediction of anthocyanin content in three types of blueberry pomace by near-infrared spectroscopy[J]. Spectroscopy and spectral analysis, 2020, 40(7): 2246-2252.
|
[14] |
LU Y Z, LU R F. Non-destructive defect detection of apples by spectroscopic and imaging technologies: A review[J]. Transactions of the asabe, 2017, 60(5): 1765-1790.
|
[15] |
谢建超, 石旺辉, 贾天泽, 等. 苹果缺陷无损检测技术的研究进展[J]. 食品研究与开发, 2025, 46(1): 210-216.
|
|
XIE J C, SHI W H, JIA T Z, et al. Research progress on non-destructive detection technologies for apple defects[J]. Food research and development, 2025, 46(1): 210-216.
|
[16] |
HERREMANS E, MELADO-HERREROS A, DEFRAEYE T, et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars[J]. Postharvest biology and technology, 2014, 87: 42-50.
|
[17] |
郭志明. 基于近红外光谱及成像的苹果品质无损检测方法和装置研究[D]. 北京: 中国农业大学, 2015.
|
|
GUO Z M. Nondestructive detection techniques and devices for assessing quality attributes of apple based on NIR spectroscopy and hyperspectral imaging[D]. Beijing: China Agricultural University, 2015.
|
[18] |
方莉. 库尔勒香梨采后果实可溶性糖组分和质地变化的光学特性响应规律研究[D]. 南京: 南京农业大学, 2022.
|
|
FANG L. Sugar content and tissue structure indices of 'Korla' pear and their relation to bulk optical properties[D]. Nanjing: Nanjing Agricultural University, 2022.
|
[19] |
于慧春, 娄楠, 殷勇, 等. 基于高光谱技术及SPXY和SPA的玉米毒素检测模型建立[J]. 食品科学, 2018, 39(16): 328-335.
|
|
YU H C, LOU N, YIN Y, et al. Predictive model for detection of maize toxins with sample set partitioning based on joint x-y distance (SPXY) algorithm and successive projections algorithm (SPA) based on hyperspectral imaging technology[J]. Food science, 2018, 39(16): 328-335.
|
[20] |
SUN Y, WANG Y H, XIAO H, et al. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content[J]. Food chemistry, 2017, 235: 194-202.
|
[21] |
LUO W, FAN G Z, TIAN P, et al. Spectrum classification of Citrus tissues infected by fungi and multispectral image identification of early rotten oranges[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2022, 279: ID 121412.
|
[22] |
WANG Z, KÜNNEMEYER R, MCGLONE A, et al. Potential of Vis-NIR spectroscopy for detection of chilling injury in kiwifruit[J]. Postharvest biology and technology, 2020, 164: ID 111160.
|
[23] |
温云梦, 张冬冬, 王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展[J]. 绿色科技, 2022, 24(1): 6-10.
|
|
WEN Y M, ZHANG D D, WANG J Q. Research progress on effects of drought stress on pigment and spectral characteristics of Populus euphratica leaves[J]. Journal of green science and technology, 2022, 24(1): 6-10.
|
[24] |
苏亚拉其其格, 张振鑫, 李卓凌, 等. 基于高光谱特征参数的马铃薯块茎形成期叶片含水量定量监测模型[J]. 光谱学与光谱分析, 2025, 45(3): 774-783.
|
|
SU Y, ZHANG Z X, LI Z L, et al. Quantitative monitoring models of potato leaf water content in Tuber formation period based on hyperspectral characteristic parameters[J]. Spectroscopy and spectral analysis, 2025, 45(3): 774-783.
|
[25] |
史兴秀, 冯贝贝, 闫鹏, 等. '王林'苹果早期水心病发生过程中的相关生理变化[J]. 园艺学报, 2025, 52(1): 171-184.
|
|
SHI X X, FENG B B, YAN P, et al. Physiological changes associated with early watercore in'orin'Apples[J]. Acta horticulturae sinica, 2025, 52(1): 171-184.
|