Smart Agriculture ›› 2025, Vol. 7 ›› Issue (4): 119-131.doi: 10.12133/j.smartag.SA202505032
• Topic--Intelligent Sensing and Grading of Agricultural Product Quality • Previous Articles
LIU Jie1, ZHAO Kang1,2,3, ZHAO Qinjun1, SONG Ye2,3()
Received:
2025-05-29
Online:
2025-07-30
Foundation items:
The Key R&D Projects in Shandong Province(2022TZXD007); PhD Start-up Fund of University of Jinan(XBS2494)
About author:
LIU Jie, E-mail: 13285479569@163.com
corresponding author:
CLC Number:
LIU Jie, ZHAO Kang, ZHAO Qinjun, SONG Ye. Acoustic-Vibration Detection Method for The Apple Moldy Core Disease Based on D-S Evidence Theory[J]. Smart Agriculture, 2025, 7(4): 119-131.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505032
Table 1
Textural feature parameters of vibro-acoustic multi-domain images and the corresponding formulas
序号 | 特征参数 | 计算公式 | 序号 | 特征参数 | 计算公式 |
---|---|---|---|---|---|
1 | 小梯度优势 | (1) | 9 | 梯度均方差 | (9) |
2 | 大梯度优势 | (2) | 10 | 相关性 | (10) |
3 | 灰度分布不均匀性 | (3) | 11 | 灰度熵 | (11) |
4 | 梯度分布不均匀性 | (4) | 12 | 梯度熵 | (12) |
5 | 角二阶距 | (5) | 13 | 混合熵 | (13) |
6 | 灰度均值 | (6) | 14 | 惯性矩 | (14) |
7 | 梯度均值 | (7) | 15 | 逆差矩 | (15) |
8 | 灰度均方差 | (8) |
Table 2
Results of the selected apple sensitive features by the MID and MIQ search rules of mRMR algorithm
数据集类型 | 筛选的敏感特征参数 | 数据集类型 | 筛选的敏感特征参数 | ||
---|---|---|---|---|---|
时域信号统计特征 | TD 2、TD 7、TD 18、TD 5 TD 9、TD 11、TD 10、TD 6 | 频域信号统计特征 | FD 7、FD 2、FD 3、FD 8 | ||
时域 SDP图 | GLGCM | TD G9、TD G13、TD G6 TD G15、TD G10、TD G7 | 频域GASF图 | GLGCM | FD G6、FD G9、FD G13 FD G1、FD G11、FD G14 |
ULBP | TD U6、TD U28、TD U13、TD U9、TD U30、TD U52、TD U24、TD U16、TD U12、TDU 36、TD U7、TD U46、TD U42、TD U25、TD U10 | ULBP | FD U10、FDU 33、FD U20、FD U49、FD U35、FD U18、FD U24、FD U28、FD U45、FD U11、FD U54、FD U32、FD U6、FD U15 、FD U39、FD U13、FD U2 | ||
时域GASF图 | GLGCM | TD G8、TD G14、TD G11 TD G9、TD G10 | 频域GADF图 | GLGCM | FD G6、FD G9、FD G13 FD G11、FD G14、FD G1 |
ULBP | TD U12、TD U3、TD U21、TD U6、TD U35、TD U22、TD U15、TD U38、TD U26、TD U10、TD U42、TD U14、TD U33、TD U50 | ULBP | FD U16、FD U25、FD U8、FD U32、FD U20、FD U7、FD U43、FD U50、FD U21、FD U5、FD U12、FD U38、FD U23、FD U44、FD U15、FD U31 | ||
时域GADF图 | GLGCM | TD G8、TD G14、TD G9 TD G1、TD G13 | 时频域ST图 | GLGCM | TFD G10、TFD G13、TFD G5、TFD G15、TFD G6、TFD G4、TFD G14 |
ULBP | TD U3、TD U20、TD U15、TDU 23、TD U8、TD U27、TD U53、TD U19、TD U24、TD U45、TD U7、TD U13、TD U36、TD U42 | ULBP | TFD U9、TFD U23、TFD U16、TFD U32、TFD U14、TFD U43、TFD U38、TFD U11、TFD U25、TFD U58、TFD U12、TFD U30、TFD U44、TFD U52、TFD U27、TFD U8、TFD U2、TFD U15、TFD U46、TFD U6 |
Table 3
Training results of the apple MSVM classifier based on the shallow feature of each single domain
特征 | 分类准确率/% | |
---|---|---|
时域特征 | 统计特征 | 75.75 |
TD-SDP-GLGCM | 79.42 | |
TD-SDP-ULBP-PC | 76.83 | |
TD-GASF-GLGCM | 80.03 | |
TD-GASF-ULBP-PC | 78.34 | |
TD-GADF-GLGCM | 81.62 | |
TD-GADF-ULBP-PC | 85.20 | |
频域特征 | 统计特征 | 78.31 |
FD-GASF-GLGCM | 75.27 | |
FD-GASF-ULBP-PC | 80.59 | |
FD-GADF-GLGCM | 83.20 | |
FD-GADF-ULBP-PC | 88.94 | |
时频域特征 | TFD-ST-GLGCM | 93.53 |
TFD-ST-ULBP-PC | 91.62 |
Table 5
Basic probability assignment of the evidents based on the apple MSVM and ELM classifier
特征类型 | 特征名称 | 分类器 | 证据体 | 各证据体的基本概率分配值mi (Lj ) | |||
---|---|---|---|---|---|---|---|
L 1 | L 2 | L 3 | Θ | ||||
浅层特征 | TD-GADF-ULBP-PC | MSVM | E 11 | 0.295 | 0.273 | 0.306 | 0.126 |
FD-GADF-ULBP-PC | E 12 | 0.300 | 0.292 | 0.323 | 0.085 | ||
TFD-ST-GLGCM | E 13 | 0.312 | 0.306 | 0.351 | 0.031 | ||
深层特征 | TD-GADF | ELM | E 21 | 0.298 | 0.286 | 0.314 | 0.102 |
FD-GADF | E 22 | 0.312 | 0.294 | 0.366 | 0.028 | ||
TFD-ST | E 23 | 0.319 | 0.298 | 0.382 | 0.001 |
Table 7
Comparative analysis of the discrimination accuracy of the models before and after fusion for three classes of apple
分类模型 | 总体分类准确率/% | 分类模型 | 总体分类准确率/% |
---|---|---|---|
TD-GADF-ULBP-PC-MSVM | 71.64 | FD-GADF-IResNet50-ELM | 80.37 |
FD-GADF-ULBP-PC-MSVM | 77.52 | TFD-ST-IResNet50-ELM | 85.82 |
TFD-ST-GLGCM-MSVM | 82.16 | IPSO-MSVM-DS | 87.45 |
TD-GADF-IResNet50-ELM | 75.33 | Adam-IResNet50 | 93.22 |
Table 8
Discrimination results of Adam-IResNet50-IPSO-ELM-DS model constructed by different feature set for apples with different degree of moldy core
产地 | 实际类别 | 预测类别 | Kappa/% | MCC/% | F 1/% | OA/% | ||
---|---|---|---|---|---|---|---|---|
健康 | 亚健康 | 病害 | ||||||
熟知 产地 | 健康 | 106 | 2 | 0 | 89.66 | 89.68 | 93.01 | 93.22 |
亚健康 | 5 | 83 | 7 | |||||
病害 | 0 | 6 | 86 | |||||
陌生 产地 | 健康 | 68 | 4 | 0 | 85.41 | 85.55 | 90.21 | 90.36 |
亚健康 | 4 | 55 | 6 | |||||
病害 | 0 | 5 | 55 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
蔡浩, 郭宏亮. 基于多分类器DS证据理论融合的水果识别研究[J]. 中国农机化学报, 2021, 42(2): 184-189.
|
|
|
[11] |
毕淑慧, 李雪, 申涛, 等. 基于多模型证据融合的苹果分类方法[J]. 农业工程学报, 2022, 38(13): 141-149.
|
|
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
WOO S,
|
[23] |
赵康, 查志华, 李贺, 等. 基于声振信号对称极坐标图像的苹果霉心病早期检测[J]. 农业工程学报, 2021, 37(18): 290-298.
|
|
|
[24] |
|
[25] |
|
[26] |
张帅. 基于优化型混合核函数支持向量机的个人信用评估[D]. 太原: 太原理工大学, 2020.
|
|
|
[27] |
|
[28] |
|
[1] | Cao Yudong, Qi Weiyan, Li Xian, Li Zhemin. Research progress and prospect on non-destructive detection and quality grading technology of apple [J]. Smart Agriculture, 2019, 1(3): 29-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||