1 引 言
2 农业干旱遥感监测研究进展
2.1 基于遥感指数的农业干旱监测
表1 主要干旱监测遥感指数Table 1 Major remote sensing indices for drought monitoring |
类型 | 中文名称 | 英文名称 | 英文缩写 | 定义 |
---|---|---|---|---|
植被干旱指数 | 归一化植被指数 | Normalized Difference Vegetation Index | NDVI | NDVI=(NIR-R)/(NIR+R) (1) |
增强植被指数[22] | Enhanced Vegetation Index | EVI | EVI=2.5×(NIR-R)/(NIR+6×R-7.5×B+1) (2) | |
条件植被指数[14] | Vegetation Condition Index | VCI | VCI=(NDVIi-NDVImin)/(NDVImax-NDVImin)×100 (3) | |
距平植被指数[23] | Anomaly Vegetation Index | AVI | AVI=NDVIi-NDVImean (4) | |
垂直干旱指数[24] | Perpendicular Drought Index | PDI | PDI=1/((M2+1)-1/2)×(R+M×NIR) (5) | |
温度干旱指数 | 条件温度指数[15] | Temperature Condition Index | TCI | TCI=(TB max-TB i)/(TB max-TB min)×100 (6) |
归一化温度指数[25] | Normalized Difference Temperature Index | NDTI | NDTI=(LST∞-LSTi)/(LST∞-LST0) (7) | |
综合植被-温度干旱指数 | 植被健康指数[26] | Vegetation Health Index | VHI | VHI=λ×VCI+(1-λ)×(1-TCI) (8) |
温度植被干旱指数[27] | Temperature Vegetation Dryness Index | TVDI | TVDI=(Ts-Ts min)/(a+b×NDVI-Ts min) (9) | |
条件植被温度指数[16] | Vegetation Temperature Condition Index | VTCI | VTCI=(LSTNDVIi max-LSTNDVIi)/(LSTNDVIi max- LSTNDVIi min) (10) LSTNDVIi max=a+b×NDVIi (11) LSTNDVIi min=a'+b'×NDVIi (12) | |
水分干旱指数 | 水分亏缺指数[28] | Water Deficit Index | WDI | WDI=1-ET/PET (13) |
干旱严重程度指数[29] | Drought Severity Index | DSI | DSI=(Z-Zmean)/σZ (14) Z=(NDVI-NDVImean)/σNDVI+(ET/PET-(ET/PET)mean)/ σET/PET (15) | |
归一化差异水体 指数[19] | Normalized Difference Water Index | NDWI | NDWI=(R-SWIR)/(R+SWIR) (16) | |
短波红外水分胁迫 指数[20] | Shortwave Infrared Water Stress Index | SIWSI | SIWSI=(SWIR-NIR)/(SWIR+NIR) (17) | |
水分胁迫指数[30] | Mositure Stress Index | MSI | MSI=SWIR/NIR (18) | |
简单比值水分指数[31] | Simple Ratio Water Index | SRWI | SRWI=(SWIR-NIR)/(SWIR+NIR) (19) | |
归一化多波段干旱 指数[32] | Normalized Multi-band Drought Index | NMDI | NMDI=(NIR-(SWIR1-SWIR2))/(NIR+(SWIR1+ SWIR2)) (20) | |
可见光和短波红外干旱指数[33] | Visible and Short-wave Infrared Drought Index | VSDI | VSDI=1-((SWIR-B)+(R-B)) (21) | |
微波干旱指数 | 微波植被指数[34] | Microwave Vegetation Indice | MVI | MVI=(TBv(f2)-TBh(f2))/(TBv(f1)-TBh(f1)) (22) |
温度微波植被干旱 指数[35] | Temperature Microwave Vegetation Index | TMVDI | TMVDI=(LSTi-LSTmin)/(a+b×MVI-LSTmin) (23) | |
土壤湿度指数[21] | Soil Moisture Index | SMI | SMI=(σ0-σ0 dry)/(σ0 wet-σ0 dry)×100 (24) |
|
2.2 基于土壤含水量的农业干旱监测
2.2.1 可见光-热红外数据反演土壤含水量
2.2.2 微波数据反演土壤含水量
表2 基于微波遥感的土壤水分反演主要模型Table 2 Major soil moisture retrieval models based on microwave remote sensing |
适用范围 | 类型 | 模型 | 英文全称 |
---|---|---|---|
裸土 | 半经验模型[42] | Oh | / |
半经验模型[51] | Dubois | / | |
物理模型[52] | GOM | Geometrical Optics Model | |
物理模型[53] | POM | Physical Optics Model | |
物理模型[54] | SPM | Small Perturbation Model | |
物理模型[55] | SSA | Small Slope Approximation | |
物理模型[43] | IEM | Integral Equation Model | |
植被覆盖 | 半经验模型[47] | WCM | Water Cloud Model |
物理模型[44] | MIMICS | Michigan Microwave Canopy Scattering |
表3 主要的基于微波遥感的土壤水分含量产品Table 3 Major soil moisture products based on microwave remote sensing |