Welcome to Smart Agriculture 中文
Information Processing and Decision Making

Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision

  • ZHANG Wenjing ,
  • JIANG Zezhong ,
  • QIN Lifeng
Expand
  • 1.College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
    2.Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
    3.Key Laboratory of Agricultural Information Perception and Intelligent Services, Yangling 712100, China
ZHANG Wenjing, E-mail:1418454277@qq.com
QIN Lifeng, E-mail:fuser@nwafu.edu.cn

Received date: 2023-01-09

  Online published: 2023-04-14

Supported by

Shaanxi Provincial Science and Technology Research and Development Plan Project (2020NY-101)

Abstract

To deal with the issues of low accuracy of apple leaf disease images recognition under weak supervision with only image category labeling, an improved CBAM-ResNet-based algorithm was proposed in this research. Using ResNet18 as the base model, the multilayer perceptron (MLP) in the lightweight convolutional block attention module (CBAM) attention mechanism channel was improved by up-dimensioning to amplify the details of apple leaf disease features. The improved CBAM attention module was incorporated into the residual module to enhance the key details of AlphaDropout with SeLU (Scaled Exponential Linearunits) to prevent overfitting of its network and accelerate the convergence effect of the model. Finally, the learning rate was adjusted using a single-cycle cosine annealing algorithm to obtain the disease recognition model. The training test was performed under weak supervision with only image-level annotation of all sample images, which greatly reduced the annotation cost. Through ablation experiments, the best dimensional improvement of MLP in CBAM was explored as 2. Compared with the original CBAM, the accuracy rate was increased by 0.32%, and the training time of each round was reduced by 8 s when the number of parameters increased by 17.59%. Tests were conducted on a dataset of 6185 images containing five diseases, including apple spotted leaf drop, brown spot, mosaic, gray spot, and rust, and the results showed that the model achieved an average recognition accuracy of 98.44% for the five apple diseases under weakly supervised learning. The improved CBAM-ResNet18 had increased by 1.47% compared with the pre-improved ResNet18, and was higher than VGG16, DesNet121, ResNet50, ResNeXt50, EfficientNet-B0 and Xception control model. In terms of learning efficiency, the improved CBAM-ResNet18 compared to ResNet18 reduced the training time of each round by 6 s under the condition that the number of parameters increased by 24.9%, and completed model training at the fastest speed of 137 s per round in VGG16, DesNet121, ResNet50, ResNeXt50, Efficient Net-B0 and Xception control models. Through the results of the confusion matrix, the average precision, average recall rate, and average F1 score of the model were calculated to reach 98.43%, 98.46%, and 0.9845, respectively. The results showed that the proposed improved CBAM-ResNet18 model could perform apple leaf disease identification and had good identification results, and could provide technical support for intelligent apple leaf disease identification providing.

Cite this article

ZHANG Wenjing , JIANG Zezhong , QIN Lifeng . Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision[J]. Smart Agriculture, 2023 , 5(1) : 111 -121 . DOI: 10.12133/j.smartag.SA202301005

References

1 ZHU X L, ZHU M, REN H E. Method of plant leaf recognition based on improved deep convolutional neural network[J]. Cognitive systems research, 2018, 52: 223-233.
2 丁永军, 张晶晶, 李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报, 2020, 51(12): 246-251, 331.
  DING Y J, ZHANG J J, LI M Z. Disease detection of lily based on convolutional capsule network[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(12): 246-251, 331.
3 LI D S, WANG R J, XIE C J, et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors (basel, Switzerland), 2020, 20(3): ID 578.
4 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56.
  ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56.
5 任冬伟, 王旗龙, 魏云超, 等. 视觉弱监督学习研究进展[J]. 中国图象图形学报, 2022, 27(6): 1768-1798.
  REN D W, WANG Q L, WEI Y C, et al. Progress in weakly supervised learning for visual understanding[J]. Journal of image and graphics, 2022, 27(6): 1768-1798.
6 MEI S A, YANG H A, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1266-1277.
7 孙美君, 吕超章, 韩亚洪, 等. 弱监督学习下的融合注意力机制的表面缺陷检测[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 920-928.
  SUN M J, LYU C Z, HAN Y H, et al. Weakly supervised surface defect detection based on attention mechanism[J]. Journal of computer-aided design & computer graphics, 2021, 33(6): 920-928.
8 DESELAERS T, ALEXE B, FERRARI V. Weakly supervised localization and learning with generic knowledge[J]. International journal of computer vision, 2012, 100(3): 275-293.
9 RUSSAKOVSKY O, LIN Y Q, YU K, et al. Object-centric spatial pooling for image classification[C]// European conference on computer vision. Berlin, Heidelberg, Germany: Springer, 2012: 1-15.
10 DURAND T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep ConvNets for image classification, pointwise localization and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 5957-5966.
11 CHOE J, SHIM H. Attention-based dropout layer for weakly supervised object localization[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 2214-2223.
12 ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2921-2929.
13 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159.
  WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of forestry engineering, 2022, 7(1): 153-159.
14 周敏敏. 基于迁移学习的苹果叶面病害Android检测系统研究[D]. 杨凌: 西北农林科技大学, 2019.
  ZHOU M M. Apple foliage diseases recognition in android system with transfer learning-based[D]. Yangling: Northwest A & F University, 2019.
15 谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188.
  XIE Q J, WU M R, BAO J, et al. Individual pig face recognition combined with attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(7): 180-188.
16 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778.
17 涂雪滢, 刘世晶, 钱程. 基于ResNet的典型养殖鱼类识别方法研究[J]. 渔业现代化, 2022, 49(3): 81-88.
  TU X Y, LIU S J, QIAN C. Study on the identification methods of typical cultured fish based on ResNet[J]. Fishery modernization, 2022, 49(3): 81-88.
18 WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. Berlin, Heidelberg, Germany: Springer International Publishing, 2018: 3-19.
19 FU J L, ZHENG H L, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 4476-4484.
20 HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141.
21 KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[J/OL]. arXiv: , 2017.
22 GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Artificial Intelligence and Statistics Conference. Cambridge, US: MIT Press, 2011: 315-323.
23 LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J/OL]. arXiv: ,2016.
Outlines

/