Smart Agriculture ›› 2023, Vol. 5 ›› Issue (1): 111-121.doi: 10.12133/j.smartag.SA202301005
• Information Processing and Decision Making • Previous Articles Next Articles
ZHANG Wenjing1,2(), JIANG Zezhong1, QIN Lifeng1,3(
)
Received:
2023-01-09
Online:
2023-03-30
Foundation items:
About author:
ZHANG Wenjing, E-mail:1418454277@qq.com
corresponding author:
QIN Lifeng, E-mail:fuser@nwafu.edu.cn
CLC Number:
ZHANG Wenjing, JIANG Zezhong, QIN Lifeng. Identifying Multiple Apple Leaf Diseases Based on the Improved CBAM-ResNet18 Model Under Weak Supervision[J]. Smart Agriculture, 2023, 5(1): 111-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202301005
Table 2
The performance of the model under different dimension-up strategies of the shared neural network in CBAM
组号 | 升维策略 | 特征图大小 | 准确率/% | 参数量 | 训练时长/(轮·s-1) |
---|---|---|---|---|---|
(1) | 原CBAM | 1×1×C/2 | 98.12 | 11,889,885 | 145 |
(2) | 1×1×2 | 1×1×2C | 98.44 | 13,981,725 | 137 |
(3) | 1×1×3 | 1×1×3C | 97.14 | 15,376,285 | 142 |
(4) | 1×1×5 | 1×1×5C | 97.99 | 18,165,405 | 140 |
(5) | 不采用CBAM | —— | 97.99 | 11,189,893 | 143 |
Table 5
Performance comparison of different classic networks of apple leaf disease recognition
模型 | 验证集准确率/% | 测试集准确率/% | 参数量 | 训练时长/(轮·s-1) |
---|---|---|---|---|
VGG16 | 21.44 | 20.51 | 134,281,029 | 186 |
DesNet121 | 97.12 | 98.12 | 7,042,629 | 188 |
ResNet50 | 97.05 | 98.18 | 23,597,957 | 156 |
ResNeXt50 | 97.14 | 97.29 | 23,084,933 | 442 |
ResNet18 | 96.97 | 96.97 | 11,189,893 | 143 |
EfficientNet-B0 | 94.36 | 90.12 | 4,055,969 | 147 |
Xception | 97.26 | 97.93 | 20,778,725 | 234 |
CBAM-ResNet18 | 97.38 | 98.44 | 13,981,725 | 137 |
1 | ZHU X L, ZHU M, REN H E. Method of plant leaf recognition based on improved deep convolutional neural network[J]. Cognitive systems research, 2018, 52: 223-233. |
2 | 丁永军, 张晶晶, 李民赞. 基于卷积胶囊网络的百合病害识别研究[J]. 农业机械学报, 2020, 51(12): 246-251, 331. |
DING Y J, ZHANG J J, LI M Z. Disease detection of lily based on convolutional capsule network[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(12): 246-251, 331. | |
3 | LI D S, WANG R J, XIE C J, et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors (basel, Switzerland), 2020, 20(3): ID 578. |
4 | 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56. |
ZHOU Q L, MA L, CAO L Y, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart agriculture, 2022, 4(1): 47-56. | |
5 | 任冬伟, 王旗龙, 魏云超, 等. 视觉弱监督学习研究进展[J]. 中国图象图形学报, 2022, 27(6): 1768-1798. |
REN D W, WANG Q L, WEI Y C, et al. Progress in weakly supervised learning for visual understanding[J]. Journal of image and graphics, 2022, 27(6): 1768-1798. | |
6 | MEI S A, YANG H A, YIN Z P. An unsupervised-learning-based approach for automated defect inspection on textured surfaces[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1266-1277. |
7 | 孙美君, 吕超章, 韩亚洪, 等. 弱监督学习下的融合注意力机制的表面缺陷检测[J]. 计算机辅助设计与图形学学报, 2021, 33(6): 920-928. |
SUN M J, LYU C Z, HAN Y H, et al. Weakly supervised surface defect detection based on attention mechanism[J]. Journal of computer-aided design & computer graphics, 2021, 33(6): 920-928. | |
8 | DESELAERS T, ALEXE B, FERRARI V. Weakly supervised localization and learning with generic knowledge[J]. International journal of computer vision, 2012, 100(3): 275-293. |
9 | RUSSAKOVSKY O, LIN Y Q, YU K, et al. Object-centric spatial pooling for image classification[C]// European conference on computer vision. Berlin, Heidelberg, Germany: Springer, 2012: 1-15. |
10 | DURAND T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep ConvNets for image classification, pointwise localization and segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 5957-5966. |
11 | CHOE J, SHIM H. Attention-based dropout layer for weakly supervised object localization[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2020: 2214-2223. |
12 | ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 2921-2929. |
13 | 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159. |
WANG Y L, WU J F, LAN P, et al. Apple disease identification using improved Faster R-CNN[J]. Journal of forestry engineering, 2022, 7(1): 153-159. | |
14 | 周敏敏. 基于迁移学习的苹果叶面病害Android检测系统研究[D]. 杨凌: 西北农林科技大学, 2019. |
ZHOU M M. Apple foliage diseases recognition in android system with transfer learning-based[D]. Yangling: Northwest A & F University, 2019. | |
15 | 谢秋菊, 吴梦茹, 包军, 等. 融合注意力机制的个体猪脸识别[J]. 农业工程学报, 2022, 38(7): 180-188. |
XIE Q J, WU M R, BAO J, et al. Individual pig face recognition combined with attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(7): 180-188. | |
16 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2016: 770-778. |
17 | 涂雪滢, 刘世晶, 钱程. 基于ResNet的典型养殖鱼类识别方法研究[J]. 渔业现代化, 2022, 49(3): 81-88. |
TU X Y, LIU S J, QIAN C. Study on the identification methods of typical cultured fish based on ResNet[J]. Fishery modernization, 2022, 49(3): 81-88. | |
18 | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. Berlin, Heidelberg, Germany: Springer International Publishing, 2018: 3-19. |
19 | FU J L, ZHENG H L, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ, USA: IEEE, 2017: 4476-4484. |
20 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2018: 7132-7141. |
21 | KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[J/OL]. arXiv: , 2017. |
22 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]// Artificial Intelligence and Statistics Conference. Cambridge, US: MIT Press, 2011: 315-323. |
23 | LOSHCHILOV I, HUTTER F. SGDR: Stochastic gradient descent with warm restarts[J/OL]. arXiv: ,2016. |
[1] | HE Feng, WU Huarui, SHI Yangming, ZHU Huaji. Recognition Method of Facility Cucumber Farming Behaviours Based on Improved SlowFast Model [J]. Smart Agriculture, 2024, 6(3): 118-127. |
[2] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
[3] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[4] | WANG Yapeng, CAO Shanshan, LI Quansheng, SUN Wei. Desert Plant Recognition Method Under Natural Background Incorporating Transfer Learning and Ensemble Learning [J]. Smart Agriculture, 2023, 5(2): 93-103. |
[5] | ZHU Haipeng, ZHANG Yu'an, LI Huanhuan, WANG Jianwen, YANG Yingkui, SONG Rende. Classification and Recognition Method for Yak Meat Parts Based on Improved Residual Network Model [J]. Smart Agriculture, 2023, 5(2): 115-125. |
[6] | PAN Chenlu, ZHANG Zhenghua, GUI Wenhao, MA Jiajun, YAN Chenxi, ZHANG Xiaomin. Rice Disease and Pest Recognition Method Integrating ECA Mechanism and DenseNet201 [J]. Smart Agriculture, 2023, 5(2): 45-55. |
[7] | ZHAO Yu, REN Yiping, PIAO Xinru, ZHENG Danyang, LI Dongming. Lightweight Intelligent Recognition of Saposhnikovia Divaricata (Turcz.) Schischk Originality Based on Improved ShuffleNet V2 [J]. Smart Agriculture, 2023, 5(2): 104-114. |
[8] | LIU Yongbo, GAO Wenbo, HE Peng, TANG Jiangyun, HU Liang. Apple Phenological Period Identification in Natural Environment Based on Improved ResNet50 Model [J]. Smart Agriculture, 2023, 5(2): 13-22. |
[9] | ZHANG Zhibo, ZHAO Xining, GAO Xiaodong, ZHANG Li, YANG Menghao. Accurate Extraction of Apple Orchard on the Loess Plateau Based on Improved Linknet Network [J]. Smart Agriculture, 2022, 4(3): 95-107. |
[10] | CHEN Zhanqi, ZHANG Yu'an, WANG Wenzhi, LI Dan, HE Jie, SONG Rende. Multiscale Feature Fusion Yak Face Recognition Algorithm Based on Transfer Learning [J]. Smart Agriculture, 2022, 4(2): 77-85. |
[11] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[12] | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition [J]. Smart Agriculture, 2021, 3(1): 109-117. |
[13] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[14] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[15] | Li Miao, Wang Jingxian, Li Hualong, Hu Zelin, Yang XuanJiang, Huang Xiaoping, Zeng Weihui, Zhang Jian, Fang Sisi. Method for identifying crop disease based on CNN and transfer learning [J]. Smart Agriculture, 2019, 1(3): 46-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||