欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2020, Vol. 2 ›› Issue (2): 11-27.doi: 10.12133/j.smartag.2020.2.2.202005-SA002

• 专题--农业传感器与物联网 • 上一篇    下一篇

太阳能杀虫灯物联网故障诊断特征分析及潜在挑战

杨星1, 舒磊1,2(), 黄凯1, 李凯亮1, 霍志强2, 王彦飞1, 王心怡1, 卢巧玲1, 张亚成1   

  1. 1.南京农业大学 工学院,江苏 南京 210031
    2.英国林肯大学 工学院,林肯 LN67TS
  • 收稿日期:2020-05-12 修回日期:2020-05-29 出版日期:2020-06-30
  • 基金资助:
    南京农业大学人才引进科研启动经费(77H0603);南京农业大学2019年国家级大学生创新创业训练计划项目(201910307098K)
  • 作者简介:杨 星(1992-),男,硕士,研究方向为农业物联网。E-mail:harryyangx@gmail.com。
  • 通信作者:

Characteristics Analysis and Challenges for Fault Diagnosis in Solar Insecticidal Lamps Internet of Things

YANG Xing1, SHU Lei1,2(), HUANG Kai1, LI Kailiang1, HUO Zhiqiang2, WANG Yanfei1, WANG Xinyi1, LU Qiaoling1, ZHANG Yacheng1   

  1. 1.College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    2.School of Engineering, University of Lincoln, Lincoln, LN67TS, U. K.
  • Received:2020-05-12 Revised:2020-05-29 Online:2020-06-30

摘要:

太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

关键词: 太阳能杀虫灯, 无线传感网络, 农业物联网, 故障诊断, 虫害

Abstract:

Solar insecticidal lamps Internet of Things (SIL-IoTs) is a novel physical agricultural pest control implement, which is an emerging paradigm that extends Internet of Things technology towards Solar Insecticidal Lamp (SIL). SIL-IoTs is composed of SIL nodes with functions of preventing and controlling of agricultural migratory pests with phototaxis feature, which can be deployed over a vast region for the purpose of ensuring pests outbreak area location, reducing pesticide dosage and monitoring agricultural environmental conditions. SIL-IoTs is widely used in agricultural production, and a number of studies have been conducted. However, in most current research projects, fault diagnosis has not been taken into consideration, despite the fact that SIL-IoTs faults have an adverse influence on the development and application of SIL-IoTs. Based on this background, this research aims to analyze the characteristics and challenges of fault diagnosis in SIL-IoTs, which naturally leads to a great number of open research issues outlined afterward. Firstly, an overview and state-of-art of SIL-IoTs were introduced, and the importance of fault diagnosis in SIL-IoTs was analyzed. Secondly, faults of SIL nodes were listed and classified into different types of Wireless Sensor Networks (WSNs) faults. Furthermore, WSNs faults were classified into behavior-based, time-based, component-based, and area affected-based faults. Different types of fault diagnosis algorithms (i.e., statistic method, probability method, hierarchical routing method, machine learning method, topology control method, and mobile sink method) in WSNs were discussed and summarized. Moreover, WSNs fault diagnosis strategies were classified into behavior-based strategies (i.e., active type and positive type), monitoring-based strategies (i.e., continuous type, periodic type, direct type, and indirect type) and facility-based strategies (i.e., centralized type, distributed type and hybrid type). Based on above algorithms and strategies, four kinds of fault phenomena: 1) abnormal background data, 2) abnormal communication of some nodes, 3) abnormal communication of the whole SIL-IoTs, and 4) normal performance with abnormal behavior actually were introduced, and fault diagnosis tools (i.e., Sympathy, Clairvoyant, SNIF and Dustminer) which were adapted to the mentioned fault phenomena were analyzed. Finally, four challenges of fault diagnosis in SIL-IoTs were highlighted, i.e., 1) the complex deployment environment of SIL nodes, leading to the fault diagnosis challenges of heterogeneous WSNs under the condition of unequal energy harvesting, 2) SIL nodes task conflict, resulting from the interference of high voltage discharge, 3) signal loss of continuous area nodes, resulting in the regional link fault, and 4) multiple failure situations of fault diagnosis. To sum up, fault diagnosis plays a vital role in ensuring the reliability, real-time data transmission, and insecticidal efficiency of SIL-IoTs. This work can also be extended for various types of smart agriculture applications and provide fault diagnosis references.

Key words: solar insecticidal lamp, Wireless Sensor Networks, agricultural Internet of Things, fault diagnosis, insect disaster

中图分类号: