1 |
齐文娥, 陈厚彬, 罗滔, 等. 中国大陆荔枝产业发展现状、趋势与对策[J]. 广东农业科学, 2019, 46(10): 132-139.
|
|
QI W E, CHEN H B, LUO T, et al. Development status, trend and suggestion of Litchi industry in China's mainland[J]. Guangdong agricultural sciences, 2019, 46(10): 132-139.
|
2 |
陈厚彬, 杨胜男, 苏钻贤, 等. 2024年全国荔枝生产形势分析与管理建议[J]. 中国热带农业, 2024(3): 8-20.
|
|
CHEN H B, YANG S N, SU Z X, et al. Analysis of the national Litchi production in 2024 and management suggestions[J]. China tropical agriculture, 2024(3): 8-20.
|
3 |
刘冬梅, 杨杭旭, 周宏平, 等. 茶树植保机械及减量施药技术研究进展[J]. 中国农机化学报, 2021, 42(9): 59-67.
|
|
LIU D M, YANG H X, ZHOU H P, et al. Research progress of tea tree protection machinery and reduced pesticide application technology[J]. Journal of Chinese agricultural mechanization, 2021, 42(9): 59-67.
|
4 |
白荻, 王寅凯, 熊燕华. 基于集成学习的茶树病虫害检测方法[J/OL]. 南京农业大学学报. (2024-08-01)[2024-11-23].
|
|
BAI D, WANG Y K, XIONG Y H. Development and experiment of Panonychus citri infestation fast detector[J/OL]. Journal of Nanjing agricultural university. (2024-08-01)[2024-11-23].
|
5 |
牛冲, 牛昱光, 李寒, 等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学, 2017, 45(4):169-172.
|
|
NIU C, NIU Y G, LI H, et al. Strawberry pest and disease recognition based on image gray histogram feature[J]. Jiangsu agricultural sciences, 2017, 45(4): 169-172.
|
6 |
XIE J X, ZHANG X W, LIU Z Q, et al. Detection of Litchi leaf diseases and insect pests based on improved FCOS[J]. Agronomy, 2023, 13(5): ID 1314.
|
7 |
欧善国, 张桂香, 彭晓丹. 荔枝病虫害图像识别技术研究和应用[J]. 农业工程, 2020, 10(11): 29-35.
|
|
OU S G, ZHANG G X, PENG X D. Research and application of image recognition technology for Litchi diseases and insect pests[J]. Agricultural engineering, 2020, 10(11): 29-35.
|
8 |
叶进, 邱文杰, 杨娟, 等. 基于深度学习的荔枝虫害识别方法[J]. 实验室研究与探索, 2021, 40(6): 29-32.
|
|
YE J, QIU W J, YANG J, et al. Litchi pest identification method based on deep learning[J]. Research and exploration in laboratory, 2021, 40(6): 29-32.
|
9 |
XIAO J Y, KANG G B, WANG L H, et al. Real-time lightweight detection of lychee diseases with enhanced YOLOv7 and edge computing[J]. Agronomy, 2023, 13(12): ID 2866.
|
10 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block attention module[C]// Computer Vision – ECCV 2018. Cham, Germany: Springer International Publishing, 2018: 3-19.
|
11 |
彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300.
|
|
PENG H X, HE H J, GAO Z M, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(12): 290-300.
|
12 |
谢家兴, 陈斌瀚, 彭家骏, 等. 基于改进ShuffleNetV2的荔枝叶片病虫害图像识别[J]. 果树学报, 2023, 40(5): 1024-1035.
|
|
XIE J X, CHEN B H, PENG J J, et al. Image recognition of Litchi leaf diseases and insect pests based on improved ShuffleNetV2[J]. Journal of fruit science, 2023, 40(5): 1024-1035.
|
13 |
王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5): 227-235.
|
|
WANG W X, LIU Z Q, GAO P, et al. Detection of Litchi diseases and insect pests based on improved YOLOv4 model[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 227-235.
|
14 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]// Computer Vision – ECCV 2014. Cham: Springer International Publishing, 2014: 740-755.
|
15 |
WANG A, CHEN H, LIU L H, et al. YOLOv10: Real-time end-to-end object detection[EB/OL]. arXiv: 2405.14458, 2024.
|
16 |
TANG F L, XU Z X, HUANG Q M, et al. DuAT: dual-aggregation transformer network for medical image segmentation[C]// Chinese Conference on Pattern Recognition and Computer Vision (PRCV). Berlin, Germany: Springer Nature Singapore, 2023: 343-356.
|
17 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision. Piscataway, New Jersey, USA: IEEE, 2017: 618-626.
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 8759-8768.
|
19 |
CHEN L W, FU Y, GU L, et al. Frequency-aware feature fusion for dense image prediction[J]. IEEE transactions on pattern analysis and machine intelligence, 46(12): 10763-10780.
|
20 |
ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE transactions on cybernetics, 52(8): 8574-8586.
|
21 |
ZHOU D F, FANG J, SONG X B, et al. IoU loss for 2D/3D object detection[C]// 2019 International Conference on 3D Vision (3DV). Piscataway, New Jersey, USA: IEEE, 2019: 85-94.
|
22 |
GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[EB/OL]. arXiv: 2205.12740, 2022.
|
23 |
YU Y, ZHANG Y, CHENG Z Y, et al. MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition[J]. Engineering applications of artificial intelligence, 2023, 126: ID 107079.
|
24 |
SUN H, WEN Y, FENG H J, et al. Unsupervised bidirectional contrastive reconstruction and adaptive fine-grained channel attention networks for image dehazing[J]. Neural networks, 2024, 176: ID 106314.
|
25 |
XU S B, ZHENG S C, XU W H, et al. HCF-net: Hierarchical context fusion network for infrared small object detection[EB/OL]. arXiv:2403.10778, 2024.
|
26 |
DAI W, LIU R, WU Z X, et al. Exploiting scale-variant attention for segmenting small medical objects[EB/OL]. arXiv:2407.07720,2024.
|