1 |
曾圣然, 尚禹. 分子生物学在小麦栽培方面的研究和未来方向[J]. 种子科技, 2021, 39(15): 22-23.
|
|
ZENG S R, SHANG Y. Research and future direction of molecular biology in wheat cultivation[J]. Seed science & technology, 2021, 39(15): 22-23.
|
2 |
李跃, 刘万才, 赵中华. 2022年全国小麦病虫害发生防治概况及对策思考[J]. 中国植保导刊, 2023, 43(1): 52-54, 92.
|
|
LI Y, LIU W C, ZHAO Z H. The occurrence and management of wheat insect pests and diseases in China in 2022 and reflections on pest control measures[J]. China plant protection, 2023, 43(1): 52-54, 92.
|
3 |
兰玉彬, 王天伟, 陈盛德, 等. 农业人工智能技术:现代农业科技的翅膀[J]. 华南农业大学学报, 2020, 41(6): 1-13.
|
|
LAN Y B, WANG T W, CHEN S D, et al. Agricultural artificial intelligence technology: Wings of modern agricultural science and technology[J]. Journal of South China agricultural university, 2020, 41(6): 1-13.
|
4 |
SLADOJEVIC S, ARSENOVIC M, ANDERLA A, et al. Deep neural networks based recognition of plant diseases by leaf image classification[J]. Computational intelligence and neuroscience, 2016, 2016: ID 3289801.
|
5 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
6 |
张航, 程清, 武英洁, 等. 一种基于卷积神经网络的小麦病害识别方法[J]. 山东农业科学, 2018, 50(3): 137-141.
|
|
ZHANG H, CHENG Q, WU Y J, et al. A method of wheat disease identification based on convolutional neural network[J]. Shandong agricultural sciences, 2018, 50(3): 137-141.
|
7 |
贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317.
|
|
JIA S P, GAO H J, HANG X. Research progress on image recognition technology of crop pests and diseases based on deep learning[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(S1): 313-317.
|
8 |
DENG F, PU S L, CHEN X H, et al. Hyperspectral image classification with capsule network using limited training samples[J]. Sensors, 2018, 18(9): ID 3153.
|
9 |
XUE Z Y, XU R J, BAI D, et al. YOLO-tea: A tea disease detection model improved by YOLOv5[J]. Forests, 2023, 14(2): ID 415.
|
10 |
HUANG Q D, WU X C, WANG Q, et al. Knowledge distillation facilitates the lightweight and efficient plant diseases detection model[J]. Plant phenomics, 2023, 5: ID 0062.
|
11 |
JIANG Z C, DONG Z X, JIANG W P, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning[J]. Computers and electronics in agriculture, 2021, 186: ID 106184.
|
12 |
DONG X Y, WANG Q, HUANG Q D, et al. PDDD-PreTrain: A series of commonly used pre-trained models support image-based plant disease diagnosis[J]. Plant phenomics, 2023, 5: ID 0054.
|
13 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-Excitation Networks[J]. IEEE trans pattern anal mach intell, 2020, 42(8): 2011-2023.
|
14 |
TANG Z Y, LIU X L, LI Y, et al. Multi-atlas brain parcellation using squeeze-and-excitation fully convolutional networks[J]. IEEE transactions on image processing, 2020, 29: 6864-6872.
|
15 |
|
16 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520.
|
17 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
18 |
ALOM M Z, TAHA T M, YAKOPCIC C,et al. The history began from AlexNet: A comprehensive survey on deep learning approaches[EB/OL]. arXiv:1803.01164 [cs.CV], 2018.
|
19 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// European conference on computer vision. Cham, Switzerland: Springer, 2018: 122-138.
|
20 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 6848-6856.
|
21 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 3431-3440.
|
22 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 8759-8768.
|
23 |
SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv:1409.1556 [cs.CV], 2014.
|
24 |
JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE access, 2019, 7: 128837-128868.
|
25 |
CAI D L, ZHANG Z Y, ZHANG Z. Corner-point and foreground-area IoU loss: Better localization of small objects in bounding box regression[J]. Sensors, 2023, 23(10): ID 4961.
|
26 |
SHEPLEY A J, FALZON G, KWAN P, et al. Confluence: A robust non-IoU alternative to non-maxima suppression in object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(10): 11561-11574.
|
27 |
HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. arXiv: 1511.08060, 2015.
|
28 |
GOYAL L, SHARMA C M, SINGH A, et al. Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture[J]. Informatics in medicine unlocked, 2021, 25: ID 100642.
|
29 |
邓洁. 基于深度学习的小麦病虫害图像识别系统的开发与应用[D]. 太谷: 山西农业大学, 2022.
|
|
DENG J. Development and application of an image recognition system for wheat diseases and insect pests based on deep learning[D]. Taigu: Shanxi Agricultural University, 2022.
|
30 |
韩强. 面向小目标检测的改进YOLOv8算法研究[D]. 长春: 吉林大学, 2023.
|
|
HAN Q. Research on improved YOLOv8 algorithm for small target detection[D]. Changchun: Jilin University, 2023.
|