1 |
韩昕儒, 梅旭荣, 李思经, 等. 中国农业产业发展战略前瞻[J]. 智库理论与实践, 2019, 4(6): 2-7.
|
|
HAN X, MEI X, LI S, et al. The development strategy of China's agricultural industry[J]. Think Tank Theory & Practice, 2019, 4(6): 2-7.
|
2 |
ALI A, KHAN S A, EHSANULLAH, et al. Estimation of genetic parameters in soybean for yield and morphological characters[J]. Pakistan Journal of Agriculture, Agricultural Engineering, Veterinary Sciences, 2016, 32(2): 162-168.
|
3 |
何进. 不同年代大豆品种籽粒产量差异及其水磷亏缺适应机制[D]. 兰州: 兰州大学, 2016.
|
|
HE J. Grain yield difference of soybean varieties in different ages and its adaptation mechanism to water and phosphorus deficiency[D]. Lanzhou: Lanzhou University, 2016.
|
4 |
周洪垒. 基于图像处理的水稻考种系统的设计与实现[D]. 成都: 电子科技大学, 2019.
|
|
ZHOU H. Design and implementation of rice seed test system based on image processing[D]. Chengdu: University of Electronic Science and Technology, 2019.
|
5 |
宋礽苏, 华娇, 蓝景针, 等. 转盘斜刮式光电自动数粒仪设计[J]. 农业机械学报, 2011, 42(11): 89-92.
|
|
SONG R, HUA J, LAN J, et al. Design of photoelectric automatic particle counting instrument with rotary table[J]. Transactions of the CSAM, 2011, 42(11): 89-92.
|
6 |
荣斐. 基于图像处理的作物种子自动计数软件开发[J]. 工业设计, 2011(7): 126-127.
|
|
RONG F. Development of crop seed automatic counting software based on image processing[J]. Industrial Design, 2011(7): 126-127.
|
7 |
崔亮. 基于机器视觉的农作物种子计数检测系统[D]. 太原: 中北大学, 2016.
|
|
CUI L. Crop seed counting detection system based on machine vision[D]. Taiyuan: North China University, 2016.
|
8 |
LIU T, CHEN W, WANG Y, et al. Rice and wheat grain counting method and software development based on Android system[J]. Computers and Electronics in Agriculture, 2017(141): 302-309.
|
9 |
TAN S, MA X, MAI Z, et al. Segmentation and counting algorithm for touching hybrid rice grains[J]. Computers and Electronics in Agriculture, 2019(162): 493-504.
|
10 |
潘锐, 熊勤学, 张文英. 数字图像技术及其在作物表型研究中的应用研究进展[J]. 长江大学学报(自科版), 2016, 13(21): 38-41.
|
|
PAN R, XIONG Q, ZHANG W. Digital image technology and its application in crop phenotype research[J]. Journal of Changjiang University, 2016, 13(21): 38-41.
|
11 |
章琳, 袁非牛, 张文睿, 等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56(1): 25-37.
|
|
ZHANG L, YUAN F, ZHANG W, et al. A survey of total convolution neural networks [J]. Computer Engineering and Application, 2020, 56(1): 25-37.
|
12 |
ALSMIRAT M A, AL-ALEM F, AL-AYYOUB M, et al. Impact of digital fingerprint image quality on the fingerprint recognition accuracy[J]. Multimedia Tools and Applications, 2019, 78(3): 3649-3688.
|
13 |
MEDEN B, MALLI R C, FABIJAN S, et al. Face deidentification with generative deep neural networks[J]. IET Signal Processing, 2017, 11(9): 1046-1054.
|
14 |
YU H, HE F, PAN Y. A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation[J]. Multimedia Tools and Applications, 2019, 78(9): 11779-11798.
|
15 |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
16 |
AICH S, STAVNESS I. Global sum pooling: A generalization trick for object counting with small datasets of large images[J/OL]. arXiv:1805.11123. 2018.
|
17 |
POUND M P, ATKINSON J A, WELLS D M, et al. Deep learning for multi-task plant phenotyping[C]// The IEEE International Conference on Computer Vision Workshops. Piscataway, New York, USA: IEEE, 2017: 2055-2063.
|
18 |
DENG R, TAO M, HUANG X, et al. Automated counting grains on the rice panicle based on deep learning method[J]. Sensors, 2021, 21(1): 281.
|
19 |
WU W, LIU T, ZHOU P, et al. Image analysis-based recognition and quantification of grain number per panicle in rice[J]. Plant Methods, 2019, 15: ID 122.
|
20 |
WU W, YANG T, LI RUI, et al. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales[J]. Journal of Integrative Agriculture, 2020, 19(8): 1998-2008.
|
21 |
翟强, 王陆洋, 殷保群, 等. 基于尺度自适应卷积神经网络的人群计数算法[J]. 计算机工程, 2020, 46(2): 250-254.
|
|
ZHAI Q, WANG L, YIN B, et al. Crowd counting algorithm based on scale adaptive convolution neural network[J]. Computer Engineering, 2020, 46(2): 250-254.
|
22 |
AICH S, STAVNESS I. Improving object counting with heatmap regulation[J/OL]. ArXiv:abs/1803. 05494. 2018.
|
23 |
LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: ID 114602.
|
24 |
BABU SAM D, SURYA S, VENKATESH BABU R. Switching convolutional neural network for crowd counting[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 5744-5752.
|
25 |
MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision[C]// The IEEE/CVF International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2019: 6142-6151.
|
26 |
VARIOR R R, SHUAI B, TIGHE J, et al. Multi-scale attention network for crowd counting[J/OL]. arXiv: 1901.06026. 2019.
|
27 |
ZHU L, ZHAO Z, LU C, et al. Dual path multi-scale fusion networks with attention for crowd counting[J/OL]. arXiv: 1902.01115. 2019.
|
28 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv: 1409.1556. 2014.
|