Smart Agriculture ›› 2023, Vol. 5 ›› Issue (3): 110-120.doi: 10.12133/j.smartag.SA202304006
• Special Issue--Monitoring Technology of Crop Information • Previous Articles Next Articles
PAN Weiting(), SUN Mengli, YUN Yan, LIU Ping(
)
Received:
2023-04-11
Online:
2023-09-30
Foundation items:
About author:
PAN Weiting, E-mail:2021110438@sdau.edu.cn
corresponding author:
LIU Ping, E-mail:liupingsdau@126.com
PAN Weiting, SUN Mengli, YUN Yan, LIU Ping. Identification Method of Wheat Grain Phenotype Based on Deep Learning of ImCascade R-CNN[J]. Smart Agriculture, 2023, 5(3): 110-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304006
Table 1
Results of grain recognition before and after the improvement of Cascade Mask R-CNN model
序号 | 籽粒数量/粒 | Cascade Mask R-CNN | ImCascade R-CNN | ||
---|---|---|---|---|---|
识别籽粒数量/粒 | 漏检率/% | 识别籽粒数量/粒 | 漏检率/% | ||
1 | 85 | 73 | 14.1 | 85 | 0.0 |
2 | 87 | 80 | 8.0 | 87 | 0.0 |
3 | 106 | 87 | 17.9 | 106 | 0.0 |
4 | 85 | 74 | 12.9 | 85 | 0.0 |
5 | 90 | 81 | 10.0 | 89 | 1.1 |
6 | 81 | 67 | 17.3 | 80 | 1.2 |
7 | 65 | 53 | 18.5 | 65 | 0.0 |
8 | 91 | 70 | 23.1 | 91 | 0.0 |
9 | 97 | 82 | 15.5 | 96 | 1.0 |
10 | 72 | 60 | 16.7 | 70 | 2.8 |
Table 2
The ablation results of Cascade Mask R-CNN model were improved
序号 | 模型 | 精确率 | 召回率 | mAP_50 |
---|---|---|---|---|
1 | Cascade Mask R-CNN | 0.768 | 0.680 | 0.757 |
2 | Cascade Mask R-CNN (ResNeXt) | 0.859 | 0.711 | 0.806 |
3 | Cascade Mask R-CNN (Mish) | 0.761 | 0.681 | 0.762 |
4 | Cascade Mask R-CNN (CONV) | 0.812 | 0.732 | 0.796 |
5 | Cascade Mask R-CNN (Soft-NMS) | 0.830 | 0.770 | 0.802 |
6 | ImCascade R-CNN | 0.931 | 0.854 | 0.902 |
1 |
|
2 |
陈进, 练毅, 邹容, 等. 基于机器视觉技术的水稻籽粒破碎率监测方法[J]. 农业工程技术, 2020, 40(30): ID 94.
|
|
|
3 |
|
4 |
李海泳, 殷贵鸿. 从国家粮食安全角度探讨我国小麦育种发展趋势[J]. 江苏农业科学, 2022, 50(18): 36-41.
|
|
|
5 |
|
6 |
|
7 |
冯继克, 郑颖, 李平, 等. 基于特征选择的小麦籽粒品种识别研究[J]. 中国农机化学报, 2022, 43(7): 116-123.
|
|
|
8 |
|
9 |
王莹, 李越, 武婷婷, 等. 基于密度估计和VGG-Two的大豆籽粒快速计数方法[J]. 智慧农业(中英文), 2021, 3(4): 111-122.
|
|
|
10 |
刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 223-229.
|
|
|
11 |
宋怀波, 王云飞, 段援朝, 等. 基于YOLO v5-MDC的重度粘连小麦籽粒检测方法[J]. 农业机械学报, 2022, 53(4): 245-253.
|
|
|
12 |
|
13 |
祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
|
|
|
14 |
徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42.
|
|
|
15 |
赵华民, 葛春静, 贾举庆, 等. 基于图像分析的小麦籽粒高通量表型系统研究[J]. 山东农业科学, 2021, 53(6): 113-120.
|
|
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
[1] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
[2] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
[3] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
[4] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
[5] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[6] | FAN Mingshuo, ZHOU Ping, LI Miao, LI Hualong, LIU Xianwang, MA Zhirun. Automatic Navigation and Spraying Robot in Sheep Farm [J]. Smart Agriculture, 2024, 6(4): 103-115. |
[7] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[8] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[9] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[10] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[11] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[12] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[13] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[14] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[15] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||