Smart Agriculture ›› 2023, Vol. 5 ›› Issue (3): 110-120.doi: 10.12133/j.smartag.SA202304006
• Special Issue--Monitoring Technology of Crop Information • Previous Articles Next Articles
PAN Weiting(), SUN Mengli, YUN Yan, LIU Ping()
Received:
2023-04-11
Online:
2023-09-30
corresponding author:
LIU Ping, E-mail:liupingsdau@126.com
About author:
PAN Weiting, E-mail:2021110438@sdau.edu.cn
Supported by:
PAN Weiting, SUN Mengli, YUN Yan, LIU Ping. Identification Method of Wheat Grain Phenotype Based on Deep Learning of ImCascade R-CNN[J]. Smart Agriculture, 2023, 5(3): 110-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304006
Table 1
Results of grain recognition before and after the improvement of Cascade Mask R-CNN model
序号 | 籽粒数量/粒 | Cascade Mask R-CNN | ImCascade R-CNN | ||
---|---|---|---|---|---|
识别籽粒数量/粒 | 漏检率/% | 识别籽粒数量/粒 | 漏检率/% | ||
1 | 85 | 73 | 14.1 | 85 | 0.0 |
2 | 87 | 80 | 8.0 | 87 | 0.0 |
3 | 106 | 87 | 17.9 | 106 | 0.0 |
4 | 85 | 74 | 12.9 | 85 | 0.0 |
5 | 90 | 81 | 10.0 | 89 | 1.1 |
6 | 81 | 67 | 17.3 | 80 | 1.2 |
7 | 65 | 53 | 18.5 | 65 | 0.0 |
8 | 91 | 70 | 23.1 | 91 | 0.0 |
9 | 97 | 82 | 15.5 | 96 | 1.0 |
10 | 72 | 60 | 16.7 | 70 | 2.8 |
Table 2
The ablation results of Cascade Mask R-CNN model were improved
序号 | 模型 | 精确率 | 召回率 | mAP_50 |
---|---|---|---|---|
1 | Cascade Mask R-CNN | 0.768 | 0.680 | 0.757 |
2 | Cascade Mask R-CNN (ResNeXt) | 0.859 | 0.711 | 0.806 |
3 | Cascade Mask R-CNN (Mish) | 0.761 | 0.681 | 0.762 |
4 | Cascade Mask R-CNN (CONV) | 0.812 | 0.732 | 0.796 |
5 | Cascade Mask R-CNN (Soft-NMS) | 0.830 | 0.770 | 0.802 |
6 | ImCascade R-CNN | 0.931 | 0.854 | 0.902 |
1 |
|
2 |
陈进, 练毅, 邹容, 等. 基于机器视觉技术的水稻籽粒破碎率监测方法[J]. 农业工程技术, 2020, 40(30): ID 94.
|
|
|
3 |
|
4 |
李海泳, 殷贵鸿. 从国家粮食安全角度探讨我国小麦育种发展趋势[J]. 江苏农业科学, 2022, 50(18): 36-41.
|
|
|
5 |
|
6 |
|
7 |
冯继克, 郑颖, 李平, 等. 基于特征选择的小麦籽粒品种识别研究[J]. 中国农机化学报, 2022, 43(7): 116-123.
|
|
|
8 |
|
9 |
王莹, 李越, 武婷婷, 等. 基于密度估计和VGG-Two的大豆籽粒快速计数方法[J]. 智慧农业(中英文), 2021, 3(4): 111-122.
|
|
|
10 |
刘欢, 王雅倩, 王晓明, 等. 基于近红外高光谱成像技术的小麦不完善粒检测方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 223-229.
|
|
|
11 |
宋怀波, 王云飞, 段援朝, 等. 基于YOLO v5-MDC的重度粘连小麦籽粒检测方法[J]. 农业机械学报, 2022, 53(4): 245-253.
|
|
|
12 |
|
13 |
祝诗平, 卓佳鑫, 黄华, 等. 基于CNN的小麦籽粒完整性图像检测系统[J]. 农业机械学报, 2020, 51(5): 36-42.
|
|
|
14 |
徐凌翔, 陈佳玮, 丁国辉, 等. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42.
|
|
|
15 |
赵华民, 葛春静, 贾举庆, 等. 基于图像分析的小麦籽粒高通量表型系统研究[J]. 山东农业科学, 2021, 53(6): 113-120.
|
|
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
[1] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
[2] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[3] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
[4] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[5] | PANG Chunhui, CHEN Peng, XIA Yi, ZHANG Jun, WANG Bing, ZOU Yan, CHEN Tianjiao, KANG Chenrui, LIANG Dong. HI-FPN: A Hierarchical Interactive Feature Pyramid Network for Accurate Wheat Lodging Localization Across Multiple Growth Periods [J]. Smart Agriculture, 2024, 6(2): 128-139. |
[6] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[7] | ZHANG Jianhua, YAO Qiong, ZHOU Guomin, WU Wendi, XIU Xiaojie, WANG Jian. Intelligent Identification of Crop Agronomic Traits and Morphological Structure Phenotypes: A Review [J]. Smart Agriculture, 2024, 6(2): 14-27. |
[8] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[9] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[10] | LI Zhengkai, YU Jiahui, PAN Shijia, JIA Zefeng, NIU Zijie. Individual Tree Skeleton Extraction and Crown Prediction Method of Winter Kiwifruit Trees [J]. Smart Agriculture, 2023, 5(4): 92-104. |
[11] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[12] | GUAN Bolun, ZHANG Liping, ZHU Jingbo, LI Runmei, KONG Juanjuan, WANG Yan, DONG Wei. The Key Issues and Evaluation Methods for Constructing Agricultural Pest and Disease Image Datasets: A Review [J]. Smart Agriculture, 2023, 5(3): 17-34. |
[13] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
[14] | ZHANG Gan, YAN Haifeng, HU Gensheng, ZHANG Dongyan, CHENG Tao, PAN Zhenggao, XU Haifeng, SHEN Shuhao, ZHU Keyu. Identification Method of Wheat Field Lodging Area Based on Deep Learning Semantic Segmentation and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 75-85. |
[15] | LIU Yixue, SONG Yuyang, CUI Ping, FANG Yulin, SU Baofeng. Diagnosis of Grapevine Leafroll Disease Severity Infection via UAV Remote Sensing and Deep Learning [J]. Smart Agriculture, 2023, 5(3): 49-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||