1 | 韩昕儒, 梅旭荣, 李思经, 等. 中国农业产业发展战略前瞻[J]. 智库理论与实践, 2019, 4(6): 2-7. | 1 | HAN X, MEI X, LI S, et al. The development strategy of China's agricultural industry[J]. Think Tank Theory & Practice, 2019, 4(6): 2-7. | 2 | ALI A, KHAN S A, EHSANULLAH, et al. Estimation of genetic parameters in soybean for yield and morphological characters[J]. Pakistan Journal of Agriculture, Agricultural Engineering, Veterinary Sciences, 2016, 32(2): 162-168. | 3 | 何进. 不同年代大豆品种籽粒产量差异及其水磷亏缺适应机制[D]. 兰州: 兰州大学, 2016. | 3 | HE J. Grain yield difference of soybean varieties in different ages and its adaptation mechanism to water and phosphorus deficiency[D]. Lanzhou: Lanzhou University, 2016. | 4 | 周洪垒. 基于图像处理的水稻考种系统的设计与实现[D]. 成都: 电子科技大学, 2019. | 4 | ZHOU H. Design and implementation of rice seed test system based on image processing[D]. Chengdu: University of Electronic Science and Technology, 2019. | 5 | 宋礽苏, 华娇, 蓝景针, 等. 转盘斜刮式光电自动数粒仪设计[J]. 农业机械学报, 2011, 42(11): 89-92. | 5 | SONG R, HUA J, LAN J, et al. Design of photoelectric automatic particle counting instrument with rotary table[J]. Transactions of the CSAM, 2011, 42(11): 89-92. | 6 | 荣斐. 基于图像处理的作物种子自动计数软件开发[J]. 工业设计, 2011(7): 126-127. | 6 | RONG F. Development of crop seed automatic counting software based on image processing[J]. Industrial Design, 2011(7): 126-127. | 7 | 崔亮. 基于机器视觉的农作物种子计数检测系统[D]. 太原: 中北大学, 2016. | 7 | CUI L. Crop seed counting detection system based on machine vision[D]. Taiyuan: North China University, 2016. | 8 | LIU T, CHEN W, WANG Y, et al. Rice and wheat grain counting method and software development based on Android system[J]. Computers and Electronics in Agriculture, 2017(141): 302-309. | 9 | TAN S, MA X, MAI Z, et al. Segmentation and counting algorithm for touching hybrid rice grains[J]. Computers and Electronics in Agriculture, 2019(162): 493-504. | 10 | 潘锐, 熊勤学, 张文英. 数字图像技术及其在作物表型研究中的应用研究进展[J]. 长江大学学报(自科版), 2016, 13(21): 38-41. | 10 | PAN R, XIONG Q, ZHANG W. Digital image technology and its application in crop phenotype research[J]. Journal of Changjiang University, 2016, 13(21): 38-41. | 11 | 章琳, 袁非牛, 张文睿, 等. 全卷积神经网络研究综述[J]. 计算机工程与应用, 2020, 56(1): 25-37. | 11 | ZHANG L, YUAN F, ZHANG W, et al. A survey of total convolution neural networks [J]. Computer Engineering and Application, 2020, 56(1): 25-37. | 12 | ALSMIRAT M A, AL-ALEM F, AL-AYYOUB M, et al. Impact of digital fingerprint image quality on the fingerprint recognition accuracy[J]. Multimedia Tools and Applications, 2019, 78(3): 3649-3688. | 13 | MEDEN B, MALLI R C, FABIJAN S, et al. Face deidentification with generative deep neural networks[J]. IET Signal Processing, 2017, 11(9): 1046-1054. | 14 | YU H, HE F, PAN Y. A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation[J]. Multimedia Tools and Applications, 2019, 78(9): 11779-11798. | 15 | LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. | 16 | AICH S, STAVNESS I. Global sum pooling: A generalization trick for object counting with small datasets of large images[J/OL]. arXiv:1805.11123. 2018. | 17 | POUND M P, ATKINSON J A, WELLS D M, et al. Deep learning for multi-task plant phenotyping[C]// The IEEE International Conference on Computer Vision Workshops. Piscataway, New York, USA: IEEE, 2017: 2055-2063. | 18 | DENG R, TAO M, HUANG X, et al. Automated counting grains on the rice panicle based on deep learning method[J]. Sensors, 2021, 21(1): 281. | 19 | WU W, LIU T, ZHOU P, et al. Image analysis-based recognition and quantification of grain number per panicle in rice[J]. Plant Methods, 2019, 15: ID 122. | 20 | WU W, YANG T, LI RUI, et al. Detection and enumeration of wheat grains based on a deep learning method under various scenarios and scales[J]. Journal of Integrative Agriculture, 2020, 19(8): 1998-2008. | 21 | 翟强, 王陆洋, 殷保群, 等. 基于尺度自适应卷积神经网络的人群计数算法[J]. 计算机工程, 2020, 46(2): 250-254. | 21 | ZHAI Q, WANG L, YIN B, et al. Crowd counting algorithm based on scale adaptive convolution neural network[J]. Computer Engineering, 2020, 46(2): 250-254. | 22 | AICH S, STAVNESS I. Improving object counting with heatmap regulation[J/OL]. ArXiv:abs/1803. 05494. 2018. | 23 | LIU Y, SUN P, WERGELES N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: ID 114602. | 24 | BABU SAM D, SURYA S, VENKATESH BABU R. Switching convolutional neural network for crowd counting[C]// The IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2017: 5744-5752. | 25 | MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision[C]// The IEEE/CVF International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2019: 6142-6151. | 26 | VARIOR R R, SHUAI B, TIGHE J, et al. Multi-scale attention network for crowd counting[J/OL]. arXiv: 1901.06026. 2019. | 27 | ZHU L, ZHAO Z, LU C, et al. Dual path multi-scale fusion networks with attention for crowd counting[J/OL]. arXiv: 1902.01115. 2019. | 28 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv: 1409.1556. 2014. |
|