Welcome to Smart Agriculture

Smart Agriculture

   

Suitable Sowing Date for Winter Wheat Based on European Centre for Medium-Range Weather Forecasts Reanalysis Data: A Case Study of Qihe County, Shandong Province

LIU Ruixuan1(), ZHANG Fangzhao1(), ZHANG Jibo2,3, LI Zhenhai1, YANG Juntao1   

  1. 1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    2. Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong, Ji'nan 250031, China
    3. Shandong Provincial Climate Center, Ji'nan 250031, China
  • Received:2023-09-13 Online:2024-01-26
  • corresponding author:
    ZHANG Fangzhao, E-mail:
  • Supported by:
    National Natural Science Foundation of China(42304035); Dezhou Wheat Industry Research Institute of Shandong Agricultural University; Key Research and Development Program of Shandong Province(2021LZGC026)

Abstract:

Objective In the context of Global warming, accurately determining the suitable sowing date for winter wheat is of great significance for improving wheat yield and ensuring national food security. Traditional visual interpretation method is not only time-consuming and labor-intensive, but also covers a relatively small area. Remote sensing monitoring, belongs to post-event monitoring, exhibits a time lag. The aim is to use the temperature threshold method and accumulated thermal time requirements for wheat leaves appearance method to analyze the suitable sowing date for winter wheat in county-level towns under the influence of long-term sequence of climate warming. Methods The research area were various townships in Qihe county, Shandong province. Based on ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis data from 1997 to 2022, 16 meteorological data grid points in Qihe county were selected. Firstly, the bilinear interpolation method was used to interpolate the temperature data of grid points into the approximate center points of each township in Qihe county, and the daily average temperatures for each township were obtained. Then, temperature threshold method was used to determine the final dates of stable passage through 18, 16, 14 and 0 ℃. Key sowing date indicators such as suitable sowing temperature for different wheat varieties, Growing Degree Days (GDD)≥0 ℃ from different sowing dates to before overwintering, and daily average temperature over the years were used for statistical analysis of the suitable sowing date for winter wheat. Secondly, the accumulated thermal time requirements for wheat leaves appearance method was used to calculate the appropriate date of GDD for strong seedlings before winter by moving forward from the stable date of dropping to 0 ℃. Accumulating the daily average temperatures above 0 ℃ to the date when the GDD above 0 ℃ was required for the formation of strong seedlings of wheat, a range of ±3 days around this calculated date was considered the theoretical suitable sowing date. Finally, combined with actual production practices, the appropriate sowing date of winter wheat in various townships of Qihe county was determined under the trend of climate warming. Results and Discussions The results showed that, from November 1997 to early December 2022, winter and annual average temperatures in Qihe county had all shown an upward trend, and there was indeed a clear trend of climate warming in various townships of Qihe county. Judging from the daily average temperature over the years, the temperature fluctuation range in November was the largest in a year, with a maximum standard deviation was 2.61 ℃. This suggested a higher likelihood of extreme weather conditions in November. Therefore, it was necessary to take corresponding measures to prevent and reduce disasters in advance to avoid affecting the growth and development of wheat. In extreme weather conditions, it was limited to determine the sowing date only by temperature or GDD. In cold winter years, it was too one-sided to consider only from the perspective of GDD. It was necessary to expand the range of GDD required for winter wheat before overwintering based on temperature changes to ensure the normal growth and development of winter wheat. The suitable sowing date for semi winter wheat obtained by temperature threshold method was from October 4th to October 16th, and the suitable sowing date for winter wheat was from September 27th to October 4th. Taking into account the GDD required for the formation of strong seedlings before winter, the suitable sowing date for winter wheat was from October 3rd to October 13th, and the suitable sowing date for semi winter wheat was from October 15th to October 24th, which was consisted with the suitable sowing date for winter wheat determined by the accumulated thermal time requirements for wheat leaves appearance method. Considering the winter wheat varieties planted in Qihe county, the optimal sowing date for winter wheat in Qihe county was from October 3rd to October 16th, and the optimal sowing date was from October 5th to October 13th. With the gradual warming of the climate, the suitable sowing date for wheat in various townships of Qihe county in 2022 was later than that in 2002. However, the sowing date for winter wheat was still influenced by factors such as soil moisture, topography, and seeding quality. The suitable sowing date for a specific year still needed to be adjusted to local conditions and flexibly sown based on the specific situation of that year. Conclusions The experimental results proved the feasibility of the temperature threshold method and accumulated thermal time requirements for wheat leaves appearance method in determining the suitable sowing date for winter wheat. The temperature trend can be used to identify cold or warm winters, and the sowing date can be adjusted in a timely manner to enhance wheat yield and reduce the impact of excessively high or low temperatures on winter wheat. The research results can not only provide decision-making reference for winter wheat yield assessment in Qihe county, but also provide an important theoretical basis for scientifically arrangement of agricultural production.

Key words: winter wheat, suitable sowing date, ECMWF, GDD