Welcome to Smart Agriculture

Content of Intelligent Management and Control in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Supply and Demand Forecasting Model of Multi-Agricultural Products Based on Deep Learning
    ZHUANG Jiayu, XU Shiwei, LI Yang, XIONG Lu, LIU Kebao, ZHONG Zhiping
    Smart Agriculture    2022, 4 (2): 174-182.   DOI: 10.12133/j.smartag.SA202203013
    Abstract684)   HTML75)    PDF(pc) (1057KB)(1105)       Save

    To further improve the simulation and estimation accuracy of the supply and demand process of agricultural products, a large number of agricultural data at the national and provincial levels since 1980 were used as the basic research sample, including production, planted area, food consumption, industrial consumption, feed consumption, seed consumption, import, export, price, GDP, population, urban population, rural population, weather and so on, by fully considering the impact factors of agricultural products such as varieties, time, income and economic development, a multi-agricultural products supply and demand forecasting model based on long short-term memory neural network (LSTM) was constructed in this study. The general thought of supply and demand forecasting model is packaging deep neural network training model as an I/O-opening modular model, reserving control interface for input of outside data, and realizing the indicators forecasting of supply and demand and matrixing of balance sheet. The input of model included forecasting balance sheet data of agricultural products, annual price data, general economic data, and international currency data since 2000. The output of model was balance sheet data of next decade since forecasting time. Under the premise of fully considering the mechanical constraints, the model used the advantages of deep learning algorithms in nonlinear model analysis and prediction to analyze and predict supply and demand of 9 main types of agricultural products, including rice, wheat, corn, soybean, pork, poultry, beef, mutton, and aquatic products. The production forecast results of 2019-2021 based on this model were compared and verified with the data published by the National Bureau of Statistics, and the mean absolute percentage error was 3.02%, which meant the average forecast accuracy rate of 2019-2021 was 96.98%. The average forecast accuracy rate was 96.10% in 2019, 98.26% in 2020, and 96.58% in 2021, which shows that with the increase of sample size, the prediction effect of intelligent learning model would gradually get better. The forecasting results indicate that the multi-agricultural supply and demand prediction model based on LSTM constructed in this study can effectively reflect the impact of changes in hidden indicators on the prediction results, avoiding the uncontrollable error introduced by manual experience intervention. The model can provide data production and technical support such as market warning, policy evaluation, resource management and public opinion analysis for agricultural production and management and macroeconomic regulation, and can provide intelligent technical support for multi-regional and inter-temporal agricultural outlook work by monitoring agricultural operation data in a timely manner.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Comparative Study of the Regulation Effects of Artificial Intelligence-Assisted Planting Strategies on Strawberry Production in Greenhouse
    GENG Wenxuan, ZHAO Junye, RUAN Jiwei, HOU Yuehui
    Smart Agriculture    2022, 4 (2): 183-193.   DOI: 10.12133/j.smartag.SA202203006
    Abstract480)   HTML82)    PDF(pc) (869KB)(577)       Save

    Artificial intelligence (AI) assisted planting can improve in the precise management of protected horticultural crops while also alleviating the increasingly prevalent problem of labor shortage. As a typical representative of labor-intensive industries, the strawberry industry has a growing need for intelligent technology. To assess the regulatory effects of various AI strategies and key technologies on strawberry production in greenhouse, as well as provide valuable references for the innovation and industrial application of AI in horticultural crops, four AI planting strategies were evaluated. Four 96 m2 modern greenhouses were used for planting strawberry plants. Each greenhouse was equipped with standard sensors and actuators, and growers used artificial intelligence algorithms to remotely control the greenhouse climate and crop growth. The regulatory effects of four different AI planting strategies on strawberry growth, fruit yield and qualitywere compared and analyzed. And human-operated cultivation was taken as a reference to analyze the characteristics, existing problems and shortages. Each AI planting strategy simulated and forecast the greenhouse environment and crop growth by constructing models. AI-1 implemented greenhouse management decisions primarily through the knowledge graph method, whereas AI-2 transferred the intelligent planting model of Dutch greenhouse tomato planting to strawberry planting. AI-3 and AI-4 created growth and development models for strawberries based on World Food Studies (WOFOST) and Product of Thermal Effectiveness and Photosynthesis Active Radiation (TEP), respectively. The results showed that all AI supported strategy outperformed a human-operated greenhouse that served as reference. In comparison to the human-operated cultivation group, the average yield and output value of the AI planting strategy group increased 1.66 and 1.82 times, respectively, while the highest Return on Investment increased 1.27 times. AI can effectively improve the accuracy of strawberry planting management and regulation, reduce water, fertilizer, labor input, and obtain higher returns under greenhouse production conditions equipped with relatively complete intelligent equipment and control components, all with the goal of high yield and quality. Key technologies such as knowledge graphs, deep learning, visual recognition, crop models, and crop growth simulators all played a unique role in strawberry AI planting. The average yield and Return on Investment (ROI) of the AI groups were greater than those of the human-operated cultivation group. More specifically, the regulation of AI-1 on crop development and production was relatively stable, integrating expert experience, crop data, and environmental data with knowledge graphs to create a standardized strawberry planting knowledge structure as well as intelligent planting decision-making approach. In this study, AI-1 achieved the highest yield, the heaviest average fruit weight, and the highest ROI. This group's AI-assisted strategy optimized the regulatory effect of growth, development, and yield formation of strawberry crops in consideration of high yield and quality. However, there are still issues to be resolved, such as the difficulty of simulating the disturbance caused by manual management and collecting crop ontology data.

    Table and Figures | Reference | Related Articles | Metrics | Comments0