Welcome to Smart Agriculture

Table of Content

    30 October 2019, Volume 1 Issue 4
    Overview Article
    Progress and prospects of crop diseases and pests monitoring by remote sensing | Open Access
    Huang Wenjiang, Shi Yue, Dong Yingying, Ye Huichun, Wu Mingquan, Cui Bei, Liu Linyi
    2019, 1(4):  1-11.  doi:10.12133/j.smartag.2019.1.4.201905-SA005
    Asbtract ( 3265 )   HTML ( 7088)   PDF (566KB) ( 2463 )  
    References | Related Articles | Metrics

    Global change and natural disturbances have already caused a severe co-epidemic of crop pests and diseases, such as aphids, fusarium, rust, and powdery mildew. These threats may result in serious deterioration of grain yield and quality. Traditionally, crop pests and diseases are monitored by visual inspection of individual plants, which is time-consuming and inefficient. Besides, the distribution of different infected wheat patches are hard to identify through manual scouting. However, the spatial scale difference of remote sensing observation directly affects the remote sensing diagnosis mechanism and monitoring method of pests and diseases. The differences in pest and disease characterization and monitoring mechanisms promote the development of the remote sensing-based monitoring technology at different spatial scales, and the complementarity of multi-spatial data sources (remote sensing, meteorology, plant protection, etc.) increase the chance of the precision monitoring of the occurrence and development of pest and disease. As a non-destructive way of collecting ground information, remote sensing technologies have been proved to be feasible in crop pests and diseases monitoring and forecasting. Meanwhile, many crop diseases and pests monitoring and alarming systems have been developed to manage and control agricultural practices. Based on the description of physiological mechanism that crop diseases and pests stressed spectral response, some effective spectral wavelengths, remote sensing monitoring technologies, and crop pests and disease monitoring and forecasting system were summarized and sorted in this paper. In addition, challenge problems of key technology on monitoring crop diseases and pests with remote sensing was also pointed out, and some possible solutions and tendencies were also provided. This article detailed revealed the researches on the remote sensing based monitoring methods on detection and classification of crop pests and diseases with the challenges of regional-scale, multi-source, and multi-temporal data. In addition, we also reviewed the remote sensing monitoring of pests and diseases that meet the characteristics of different remote sensing spatial scale data and precise plant protection and control needs. Finally, we investigated the current development of the pest and disease monitoring systems which integrated the research and application of the existing crop pest and disease monitoring and early warning model. In summary, this review will prove a new perspective for sustainable agriculture from the current researches, thus, new technology for earth observation and habitat monitoring will not only directly benefit crop production through better pest and disease management but through the biophysical controls on pest and disease emergence. Application of UAVs, image processing to insect/disease detection and control should be directly transferable to other pests and diseases, with feedbacks into UAV and EO capabilities for the mapping and management of these agricultural risks. Similarly, these vision systems open other possibilities for farm robotics such as mechanical rather than manual pesticide usage for below crop canopy pest surveying.

    Perspectives and experiences on the development and innovation of agricultural aviation and precision agriculture from the Mississippi Delta and recommendations for China | Open Access
    Huang Yanbo
    2019, 1(4):  12-30.  doi:10.12133/j.smartag.2019.1.4.201909-SA003
    Asbtract ( 1663 )   HTML ( 2103)   PDF (1240KB) ( 12542 )  
    References | Related Articles | Metrics

    Crop production management has advanced into the stage of smart agriculture, which is driven by state-of-the-art agricultural information technology, intelligent equipment and massive data resources. Smart agriculture inherits ideas from precision agriculture and brings agricultural production and management from mechanization and informalization to intelligentization with automatization. Precision agriculture has been developed from strategic monitoring operations in the 1980s to tactical monitoring and control operations in the 2010s. In its development, agricultural aviation has played a key role in serving systems for spray application of crop protection and production materials for precision agriculture with the guidance of global navigation through geospatial prescription mapping derived from remotely-sensed data. With the development of modernized agriculture, agricultural aviation is even more important for advancing precision agricultural practices with more efficient soil and plant health sensing and more prompt and effective system actuation and action. This paper overviews the status of agricultural aviation for precision agriculture to move toward smart agriculture, especially in the Mississippi Delta region, one of the most important agricultural areas in the U.S. The research and development by scientists associated with the Mississippi Delta region are reported. The issues, challenges and opportunities are identified and discussed for further research and development of agricultural aviation technology for next-generation precision agriculture and smart agriculture.

    Overview Article
    Application analysis and suggestions of modern information technology in agriculture: Thoughts on Internet enterprises entering agriculture | Open Access
    Kong Fantao, Zhu Mengshuai, Sun Tan
    2019, 1(4):  31-41.  doi:10.12133/j.smartag.2019.1.4.201906-SA012
    Asbtract ( 2684 )   HTML ( 9982)   PDF (964KB) ( 2076 )  
    References | Related Articles | Metrics

    With the rapid development of information technology and the steady growth of the agricultural and rural economy, agricultural information technology has attracted more and more attention, and the trend of capital and technology playing important roles in the agricultural field has gradually formed. In recent years, large Internet enterprises have begun to enter the agricultural industry and smart agriculture has developed strongly. This paper analyzed the status and technical application characteristics of large-scale Internet companies engaged in agriculture; explained the reasons why the current technology and capital entered the agricultural field in large numbers, especially in the context of the world science and technology revolution and China's economic and social status, analyzed the key areas and problems of the combination of technology, capital and agricultural industry; analyzed the application boundary, application prospects of information technology in the agricultural field. In view of the digital development and application of new technology in agricultural and rural areas, this paper put forward some policy suggestions. Firstly, strengthen policy guidance and support to prevent market speculation risks; secondly, built a system and mechanism for the convergence and integration of Internet enterprises and agricultural industries; thirdly, focus on cutting-edge key technologies and strengthen efforts to promote scientific and technological innovation; finally speed up the dynamic follow-up of technology achievement transformation, strengthen supervision and do a good job in leading and demonstration drive. The key priority is to focus on the world’s cutting-edge technology and key application technology, strengthen the dominant position of technological innovation of enterprises, and combine with the specific practice of production, circulation and consumption of China’s agricultural industry to fully promote the innovation and application of China’s agricultural information technology. And the main research contents included summarize the successful examples carefully, doing a good job in publicity and guidance, and promoting the typical leads vigorously so that they can be copied, popularized and applied; for the failure cases, learn from the insufficient lessons to prevent the recurrence of similar cases; for the advanced practical technology formed by Internet enterprises, promote technology sharing and information sharing on the premise of protecting intellectual property rights and turn it into a new driving force for the development of agricultural modernization. Only by applying the latest achievement of modern information technology to the practice of agricultural production and becoming the representative of agricultural productivity, can we truly contribute to the development of modern agriculture and rural areas in China and the wing of information.

    Information Perception and Acquisition
    Method of tomato leaf diseases recognition method based on deep residual network | Open Access
    Wu Huarui
    2019, 1(4):  42-49.  doi:10.12133/j.smartag.2019.1.4.201908-SA002
    Asbtract ( 1569 )   HTML ( 892)   PDF (1077KB) ( 990 )  
    References | Related Articles | Metrics

    Intelligent recognition of greenhouse vegetable diseases plays an important role in the efficient production and management. The color, texture and shape of some diseases in greenhouse vegetables are often very similar, it is necessary to construct a deep neural network to judge vegetable diseases. Based on the massive image data of greenhouse vegetable diseases, the depth learning model can automatically extract image details, which has better disease recognition effect than the artificial design features. For the traditional deep learning model of vegetable disease image recognition, the model recognition accuracy can be improved by increasing the network level. However, as the network level increases to a certain depth, it will lead to the degradation / disappearance of the network gradient, which degrades the recognition performance of the learning model. Therefore, a method of vegetable disease identification based on deep residual network model was studied in this paper. Firstly, considering that the super parameter value in the deep network model has a great influence on the accuracy of network identification, Bayesian optimization algorithm was used to autonomously learn the hyper-parameters such as regularization parameters, network width, stochastic momentum et al, which are difficult to determine in the network, eliminate the complexity of manual parameter adjustment, and reduce the difficulty of network training and saves the time of network construction. On this basis, the gradient could flow directly from the latter layer to the former layer through the identical activation function by adding residual elements to the traditional deep neural network. The deep residual recognition model takes the whole image as the input, and obtains the optimal feature through multi-layer convolution screening in the network, which not only avoids the interference of human factors, but also solves the problem of the performance degradation of the disease recognition model caused by the deep network, and realizes the high-dimensional feature extraction and effective disease recognition of the vegetable image. Relevant simulation results show that compared with other traditional models for vegetable disease identification, the deep residual neural network shows better stability, accuracy and robustness. The deep residual network model based on hyperparametric self-learning achievesd good recognition performance on the open data set of tomato diseases, and the recognition accuracy of 4 common diseases of tomato leaves reached more than 95%. The researth can provide a basic methed for fast and accurate recognition of tomato leaf diseases.

    Edge extraction method of remote sensing UAV terrace image based on topographic feature | Open Access
    Yang Yanan, Kang Yang, Fan Xiao, Chang Yadong, Zhang Hanwen, Zhang Hongming
    2019, 1(4):  50-61.  doi:10.12133/j.smartag.2019.1.4.201908-SA005
    Asbtract ( 1034 )   HTML ( 998)   PDF (2234KB) ( 875 )  
    References | Related Articles | Metrics

    Terraces achieve water storage and sediment function by slowing down the slope and soil erosion. This kind of terraced or wave-section farmland built along the contour line on is a high-yield and stable farmland facility with key construction in the dry farming area. It provides a strong guarantee for increasing grain production and farmers' income. In recent years, Gansu province has carried out a large amount of construction on terraces, however, due to the poor quality of the previous construction and management, the terraced facilities are in danger of being destroyed. In order to prevent and repair the terraces, it is necessary to timely and accurately extract the terrace information. The segmentation of terraces can be obtained by edge extraction, but the effect of satellite data is not ideal. With the continuous development of remote sensing technology of drones, the acquisition of high-precision terrace topographic information has become possible. In this research, the slope is extracted from the digital elevation model data in the data preprocessing stage, then the orthophoto data of the three experimental areas are merged with the corresponding slope data, respectively. Then the rough edge extraction method based on Canny operator and the fine edge extraction method based on multi-scale segmentation are used to perform edge detection on two data sources. Finally, the influence of slope on the extraction of terraced edges of remote sensing images of UAVs was analyzed based on the overall accuracy of edge detection and user accuracy. The experimental results showed that, in the rough edge extraction method, the data source accuracy of the fusion slope and image was improved by 23.97% in the OA precision evaluation, and the average improvement in the UV accuracy was 20.68%. In the fine edge extraction method, the accuracy based on the data source 2 was also increased by 17.84% on average in the OA accuracy evaluation of the data source 1, and by an average of 19.0% in the UV accuracy evaluation. The research shows that in the extraction of terraced edges of UAV remote sensing images, adding certain terrain features can achieve better edge extraction results.

    Information Processing and Decision Making
    Developmental model of wheat smart production based on the integration of information technology, agricultural machinery and agronomy | Open Access
    Ma Xinming, Ma Zhaowu, Xu Xin, Xi Lei, Xiong Shuping, Li Haiyang
    2019, 1(4):  62-71.  doi:10.12133/j.smartag.2019.1.4.201910-SA001
    Asbtract ( 1082 )   HTML ( 1567)   PDF (1015KB) ( 879 )  
    References | Related Articles | Metrics

    In order to study the development mode and realization way of smart agriculture, the technical route of agricultural information fusion of agricultural machinery in different production stages before, during and after wheat production was designed. Pre-production: use Beidou precision navigation technology and motion planning optimization method to realize the full area coverage path planning of the field operation of the automatic navigation tractor, combine the laser leveling equipment to realize the accurate and standardized land leveling and laser leveling, and realize the accurate and standardized operation of the land. On this basis, the spatial interpolation technology was used to make the variable fertilization prescription map and combining variable rate fertilizer machine and realized variable rate precise application of fertilizer and precise seeding. At the same time, combining with the optimal design of planting scheme, based on the prenatal database and knowledge base, it optimizes the decision-making of variety configuration and sowing time and seeding amount were optimized, and the software intelligent decision-making technology was used to recommend the varieties and sowing time and seeding amount suitable for planting at the decision-making point, and constructs the wheat and maize prenatal information service recommendation system based on WebGIS was constructed. In production: based on the image technology of automatic segmentation and color feature extraction of wheat image in the field environment, a remote monitoring model of wheat nutritional status with the function of wheat population image segmentation and nutritional estimation was established to realize the non-destructive monitoring of wheat nutritional status in the field environment. After production, the integrated measurement sensor, speed sensor, header height sensor and GPS were adopted, and controller area network bus was adopted with wireless communication technology, a real-time wheat yield measurement system was developed, which was installed on a large-scale combine harvester to carry out the real-time prediction service of wheat yield, so as to realize the synchronous process of wheat harvest and yield measurement, with the error less than 5%. The intelligent transformation of common agricultural machinery equipment and the research and development of sowing and harvesting equipment adapted to agricultural production were completed and realized, and the small scale with high-efficiency utilization of light and heat resources, increase of output and green development were studied. The model of wheat planting production was optimized .A real time measurement and prediction system for postpartum yield was developed, which included the selection of sowing date, fertilization recommendation, seedling growth and nutrition diagnosis. The experimental results show that the adoption of agricultural information fusion technology can increase wheat yield by 18.4%, input-output ratio by 16.6% and 7.9%, which shows that the intelligent agriculture of Henan province is effective and feasible.

    Multi-blockchain application technology for agricultural products transaction | Open Access
    Liang Hao, Liu Sichen, Zhang Yinuo, Lv Ke
    2019, 1(4):  72-82.  doi:10.12133/j.smartag.2019.1.4.201907-SA001
    Asbtract ( 1229 )   HTML ( 889)   PDF (1340KB) ( 1079 )  
    References | Related Articles | Metrics

    Agriculture of China is a typical agricultural system of small producer and large market, producers are too scattered. Agricultural foundation remains weak in the vast rural areas, especially poverty-stricken areas. Blockchain technology has good complementarity and applicability with China's agricultural products trading system, because of its distributed storage, transaction information transparency and product information traceability. However, the agricultural product trading system has characteristics of product diversity, commercial process complexity, user group widespread, decentralized, privacy protection and so on. It is difficult to apply the traditional blockchain technology directly to China's agricultural products trading information network. In view of the above problems, the design idea of alliance chain was adopted, and the technology of multi-chain agricultural product transaction information, which includes transaction information blockchain, user information blockchain and agricultural products information blockchain was put forward. The product information blockchain provided the detailed information of agricultural products and guarante that the traceability and non-tamperability of the information. The blockchain node access mechanism was introduced in the user information chain to provide real-name voucher registration and management functions for the agricultural product trading platform. The transaction information blockchain recorded the results of all transaction smart contracts, and through the addition of channel technology, different transaction information could be isolated from each other, which could meet the privacy protection of transaction information and user data and the rapid processing of transaction data. The profit of the transaction was automatically divided by the smart contract, which improved the efficiency of execution and reduces the transaction cost. Finally, a transparent, efficient and applicable blockchain framework for agricultural product transactions was established.

    Intelligent Management and Control
    Development of precision service system for intelligent agriculture field crop production based on BeiDou system | Open Access
    Wu Caicong, Fang Xiangming
    2019, 1(4):  83-90.  doi:10.12133/j.smartag.2019.1.4.201911-SA001
    Asbtract ( 1458 )   HTML ( 1118)   PDF (1195KB) ( 1636 )  
    References | Related Articles | Metrics

    Precision navigation technology of agricultural machinery is being applied on a large scale for field crop production in China. The technology can reduce labor cost, improve working quality, and extend working time. However, the precision application technology of agricultural machinery and precision management technology of agricultural production are still slow in development. The technology, equipment, and service system of precision agriculture have not been completely developed yet in China. There is still a lack of scientific and technical means to achieve the main objectives of cost saving, efficiency improvement, energy saving, and environmental protection in crop production. With the integration of material, energy, and information, intelligent agricultural machinery system is being developed to provide a safer, more efficient, and more scientific solution for agricultural production. In view of the characteristics of intelligent agricultural machinery system, the characteristics of socialized service of agricultural machinery in China, and the status quo of agricultural financial subsidies, this paper puts forward an idea that to develop a socialized precision service system of agricultural machinery, in order to achieve cost saving, efficiency improvement, energy saving, and environmental protection for crop production. The system includes the core participants in agricultural machinery production operations, such as agricultural production organizations, agricultural machinery service organizations, related agriculture management authorities, and the third-party data management service organization. The key technologies for the system include the intelligent gateway technology of agricultural machinery, the variable controlling and measurement technology of fertilizer and chemical, the big data management service technology, and the technology of professional application service platform. During the field operation, the agricultural machinery can control the application of fertilizer or chemical according the prescription map and send the data of position and flow to the database belongs to the third-party organization designated by the government. Therefore, the construction of this system can be used as a basis for the social services and the granting of subsidies. The government can set related standards of application of fertilizer or chemical, and pay the subsidies for the machinery operation according to the operating area when the farmers achieve the standards, which may encourage the farmers to adopt the advanced technology to save fertilizer and chemical. The study provides solutions and technical means to achieve the goal of reducing both fertilizer and chemicals, to adjust of the state’s relevant agricultural subsidy policies, and to promote the comprehensive application of China’s precision agricultural technology.

    Intelligent Equipment and Systems
    Design and application of data acquisition and analysis system for CropSense | Open Access
    Wang Jiaojiao, Xu Bo, Wang Congcong, Yang Guijun, Yang Zhong, Mei Xin, Yang Xiaodong
    2019, 1(4):  91-104.  doi:10.12133/j.smartag.2019.1.4.201910-SA002
    Asbtract ( 1201 )   HTML ( 1781)   PDF (1549KB) ( 1568 )  
    References | Related Articles | Metrics

    In view of the demand of small and medium-sized farms for rapid monitoring and accurate diagnosis of crop growth, the National Engineering Research Center for Information Technology in Agriculture (NERCITA) designed a crop growth monitoring device which named CropSense. It is a portable crop health analysis instrument based on dual-channel high-throughput spectral signals which derived from the incident and reflected light intensity of the crop canopy at red and near-infrared bands. This paper designed and implemented a data collecting and analyzing system for CropSense. It consisted of a mobile application for collecting data of CropSense and a server-side system for data and model management. The system implemented data collecting, processing, analyzing and management completely. The system calculated normalized differential vegetation index (NDVI) based on the two-channels spectral sampling data from CropSense which connected smart phone by Bluetooth, then generated crop growth parameters about nitrogen content, chlorophyll content and Leaf Area Index with the built-in spectral inversion model in the server. Meanwhile, it calculated vegetation coverage, density and color content by images captured from the camera of smart phone. When we finished the sampling program, it generated growth parameter thematic maps by Kriging interpolation based on all sampling data of the selected fields. Considering the target yield of the plot, it could provide expert advice visually. Users could get diagnostic information and professional guiding scheme of crop plots immediately after collecting data by touch a button. Now the device and system have been applied in some experimental farms of research institutes. This paper detailed application of the system in XiaoTangShan farm of NERCITA. Compared with the traditional corn flare period samples and fertilize schemes, users could avoid errors caused by manual recording. Besides, with the same corn yield, the fertilization amount has reduced 16.67% when using the generation of the variable fertilization scheme by this system. The result showed that the system could get the crop growth status efficiently and produced reasonable fertilization. The system collected and analyzed crop growth efficiently and conveniently. It is suitable for various farmers without expertise to obtain the information of the crop growth timely and can guide them to operate more effectively and economically in the field. The system saved data to web server through the Internet which improved the shortcoming of poor sharing in the traditional data exporting mode. This system is practical and promising, and it will be widely applied in the explosion of family farms in China.