1 | 问延安. 基于知识图谱的国际无人机研究可视化分析[J]. 郑州航空工业管理学院学报, 2018, 36(6): 16-25, 93. | 1 | WEN Y. Visualization analysis of international UAV research based on knowledge map[J]. Journal of Zhengzhou Institute of Aeronautical Industry Management, 2018, 36(6): 16-25, 93. | 2 | 徐旻, 张瑞瑞, 陈立平, 等. 智能化无人机植保作业关键技术及研究进展[J]. 智慧农业, 2019, 1(2): 20-33. | 2 | XU M, ZHANG R, CHEN L, et al. Key technology analysis and research progress of UAV intelligent plant protection[J]. Smart Agriculture, 2019, 1(2): 20-33. | 3 | 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. | 3 | ZHANG D, LAN Y, CHEN L, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the CSAM, 2014,45(10):53-59. | 4 | FAICAL B, FREITAS H, GOMES P, et al. An adaptive approach for UAV-based pesticide spraying in dynamic environments[J]. Computers and Electronics in Agriculture, 2017,138: 210-223. | 5 | 张瑞瑞, 李龙龙, 文瑶, 等. 植保无人机喷施雾滴沉积特性的荧光示踪分析[J]. 农业工程学报, 2020, 36(6): 47-55. | 5 | ZHANG R, LI L, WEN Y, et al. Fluorescence tracer method for analysis of droplet deposition pattern characteristics of the sprays applied via unmanned aerial vehicle[J]. Transactions of the CSAE, 2020, 36(6): 47-55. | 6 | TAO H, FENG H, XU L, et al. Estimation of crop growth parameters using UAV-Based hyperspectral remote sensing data[J]. Sensors, 2020, 20(5): ID 1296. | 7 | GAO D, SUN Q, HU B, et al. A framework for agricultural pest and disease monitoring based on Internet-of-Things and unmanned aerial vehicles[J]. Sensors, 2020,20: ID 1487. | 8 | 何雄奎. 我国植保无人机的研究与发展应用浅析[J]. 农药科学与管理, 2018, 39(9): 10-17. | 8 | HE X. Brief analysis on the research,development and application of plant protection UAV in China[J]. Pesticide Science and Administration, 2018, 39(9): 10-17. | 9 | 兰玉彬, 陈盛德, 邓继忠, 等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报, 2019,40(5)217-225. | 9 | LAN Y, CHEN S, DENG J, et al. Development situation and problem analysis of plant protection unmanned aerial vehicle in China[J]. Journal of South China Agricultural University, 2019, 40(5): 217-225. | 10 | 张俊, 廉勇, 杨志刚, 等. 植保无人机发展历程、优缺点分析及应用前景[J]. 现代农业, 2020(4): 4-7. | 10 | ZHANG J, LIAN Y, YANG Z, et al. Development history, advantages and disadvantages analysis and application prospect of plant protection UAV[J]. Modern agriculture, 2020(4): 4-7. | 11 | 陈盛德, 兰玉彬, 李继宇, 等. 航空喷施与人工喷施方式对水稻施药效果比较[J]. 华南农业大学学报, 2017,38(4):103-109. | 11 | CHEN S, LAN Y, LI J, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. | 12 | KHARIM M, WAYAYOK A, SHARIFF A, et al. Droplet deposition density of organic liquid fertilizer at low altitude UAV aerial spraying in rice cultivation[J]. Computers and Electronics in Agriculture, 2019, 167: ID 105045. | 13 | 陈豪明, 周宇杰, 骆琴, 等. 植保无人机全程解决水稻病虫草害效果评价[J]. 中国稻米, 2020, 26(5): 97-101. | 13 | CHEN H, ZHOU Y, LUO Q, et al. Evaluation of the effect of plant protection UAV on rice diseases, insect pests and weeds[J]. China Rice, 2020, 26(5): 97-101. | 14 | CHEN P, LAN Y, HUANG X, et al. Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle[J]. Agronomy-Basel, 2020,10: ID 14. | 15 | QIN W, XUE X, ZHANG S, et al. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew[J]. International Journal of Agricultural and Biological Engineering, 2018,11: 27-32. | 16 | MENG Y, LAN Y, MEI G, et al. Effect of aerial spray adjuvant applying on the efficiency of small unmanned aerial vehicle for wheat aphids control[J]. International Journal of Agricultural and Biological Engineering, 2018,11: 46-53. | 17 | WANG G, LAN Y, YUAN H, et al. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers[J]. Applied Sciences-Basel, 2019, 9: ID 218. | 18 | WANG G, LAN Y, QI H X, et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Management Science, 2019, 75: 1546-1555. | 19 | TAO H, FENG H, XU L, et al. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images[J]. Sensors, 2020, 20: ID 1231. | 20 | ZHANG X, LIANG Y, QIN Z, et al. Application of multi-rotor unmanned aerial vehicle application in management of stem borer (lepidoptera) in sugarcane[J]. Sugar Tech, 2019, 21: 847-852. | 21 | ZHANG X, SONG X, LIANG Y, et al. Effects of spray parameters of drone on the droplet deposition in sugarcane canopy[J]. Sugar Tech, 2020, 22: 583-588. | 22 | ZHENG Y, YANG S, ZHAO C, et al. Modelling operation parameters of UAV on spray effects at different growth stages of corns[J]. International Journal of Agricultural and Biological Engineering, 2017, 10: 57-66. | 23 | HAN L, YANG G, YANG H, et al. Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach[J]. Frontiers in Plant Science, 2018, 9: ID 1638. | 24 | HAN L, YANG G, DAI H, et al. Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits[J]. Frontiers in Plant Science, 2019, 10: ID 926. | 25 | 田新湖, 陈益生, 肖灿荣, 等. 植保无人机施药对玉米草地贪夜蛾的防治效果[J]. 农药科学与管理, 2020, 41(1): 48-53. | 25 | TIAN X, CHEN Y, XIAO C, et al. Control efficacy of plant protection UAV spraying against fall armyworm in maize field[J]. Pesticide Science and Administration, 2020, 41(1): 48-53. | 26 | LOU Z, XIN F, HAN X, et al. Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites[J]. Agronomy-Basel, 2018, 8(9): ID187. | 27 | NAHIYOON S, CUI L, YANG D, et al. Biocidal radiuses of cycloxaprid, imidacloprid and lambda-cyhalothrin droplets controlling against cotton aphid (Aphis gossypii) using an unmanned aerial vehicle[J]. Pest Management Science, 2020, 76: 3020-3029. | 28 | ZHANG P, DENG L, LYU Q, et al. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution[J]. International Journal of Agricultural and Biological Engineering, 2016, 9: 45-52. | 29 | TANG Y, HOU C, LUO S, et al. Effects of operation height and tree shape on droplet deposition in citrus trees using an unmanned aerial vehicle[J]. Computers and Electronics in Agriculture, 2018, 148: 1-7. | 30 | MARTINEZ-GUANTER J, AGUERA P, AGUERA J, et al. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards[J]. Precision Agriculture, 2020, 21: 226-243. | 31 | 张瑞瑞, 夏浪, 陈立平, 等. 基于U-Net网络和无人机影像的松材线虫病变色木识别[J]. 农业工程学报, 2020, 36(12): 61-68. | 31 | ZHANG R, XIA L, CHEN L, et al. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images[J]. Transactions of the CSAE, 2020, 36(12): 61-68. | 32 | YU R, LUO Y, ZHOU Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497: ID 119493. | 33 | 付健, 丁敬达. Citespace和VOSviewer软件的可视化原理比较[J]. 农业图书情报, 2019, 31(10): 31-37. | 33 | FU J, DING J. Comparison of visualization principles between Citespace and VOSviewer[J]. Agricultural Library and Information, 2019, 31(10): 31-37. | 34 | VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. | 35 | Web of ScienceTM 核心合集引文索引导航学术之路[EB/OL]. [2021-06-07]. . | 36 | 孔繁秀, 赵艳萍. 基于Web of Science核心合集的西藏民族大学自然科学论文产出统计及分析[J]. 西藏民族大学学报(哲学社会科学版), 2018, 39(5): 174-182. | 36 | KONG F, ZHAO Y. Statistics and analysis of natural science papers output of Xizang Minzu University based on Web of Science core collection[J]. Journal of Xizang Minzu University (Philosophy and Social Sciences Edition), 2018, 39(5): 174-182. | 37 | 薛雷, 戴大双. 基于知识图谱的产品质量研究可视化分析[J]. 大连海事大学学报(社会科学版), 2020,19(2): 65-71. | 37 | XUE L, DAI D. Visual analysis of product quality research based on knowledge map[J]. Journal of Dalian Maritime University (Social Science Edition), 2020,19(2): 65-71. | 38 | 王炼. 美国民用无人机产业发展现状及联邦推进措施[J]. 全球科技经济瞭望, 2017, 32(10): 18-23. | 38 | WANG L. Civil UAS industry development and government promotion measures in the US[J]. Global Science, Technology and Economy Outlook, 2017, 32(10): 18-23. | 39 | 何志辉, 何雄奎, 任延昭. 植保无人机为何在我国得到迅猛发展[J]. 农药科学与管理, 2020, 41(1): 19-22. | 39 | HE Z, HE X, REN Y. Why plant protection UAV develops rapidly in China[J]. Pesticide Science and Administration, 2020, 41(1): 19-22. | 40 | CONGRESS US. FAA modernization and reform act[Z/OL]. [2017-02-14]. . | 41 | 何雄奎. 我国植保无人机的研究与发展应用浅析[J]. 农药科学与管理, 2018, 39(9):10-17. | 41 | HE X. Brief analysis on the research,development and application of plant protection UAV in China[J]. Pesticide Science and Administration, 2018, 39(9):10-17. | 42 | COLOMINA I, MOLINA P. Unmanned aerial systems for photogrammetry and remote sensing: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97. | 43 | ZHANG C, KOVACS J. The application of small unmanned aerial systems for precision agriculture: A review[J]. Precision Agriculture, 2012, 13(6): 693-712. | 44 | WATTS A, AMBROSIA V, HINKLEY E. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use[J]. Remote Sensing, 2012, 4: 1671-1692. | 45 | TURNER D, LUCIEER A, WATSON C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds[J]. Remote Sensing, 2012, 4: 1392-1410. | 46 | NIETHAMMER U, JAMES M, ROTHMUND S, et al. UAV-based remote sensing of the super-sauze landslide: Evaluation and results[J]. Engineering Geology, 2012, 128: 2-11. | 47 | HARWIN S, LUCIEER A. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery[J]. Remote Sensing, 2012, 4: 1573-1599. | 48 | PAJARES G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81: 281-329. | 49 | BENDIG J, BOLTEN A, BENNERTZ S, et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging[J]. Remote Sensing, 2014, 6: 10395-10412. | 50 | ZARCO-TEJADA P, DIAZ-VARELA R, ANGILERI V, et al. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods[J]. European Journal of Agronomy, 2014, 55: 89-99. | 51 | D'OLEIRE-OLTMANNS S, MARZOLFF I, PETER K D, et al. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco[J]. Remote Sensing, 2012, 4: 3390-3416. | 52 | 潘玮, 郑鹏, 黄锦泉, 等. 基于数据清洗"DEAN"流程的健康信息领域研究热点探测[J]. 现代情报, 2018, 38(10): 73-77. | 52 | PAN W, ZHENG P, HUANG J, et al. Research hotspot detection of health information based on the "deanprocess" of data clean[J]. Journal of Modern Information, 2018, 38(10): 73-77. | 53 | TANG Q, ZHANG R, CHEN L, et al. Droplets movement and deposition of an eight-rotor agricultural UAV in downwash flow field[J]. International Journal of Agricultural and Biological Engineering, 2017, 10: 47-56. | 54 | TANG Q, ZHANG R, CHEN L, et al. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying[J]. Computers and Electronics in Agriculture, 2020, 174: ID 105468. | 55 | CHEN S, LAN Y, ZHOU Z, et al. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV[J]. Agronomy-Basel, 2020, 10: ID 195. | 56 | WANG J, LAN Y, ZHANG H, et al. Drift and deposition of pesticide applied by UAV on pineapple plants under different meteorological conditions[J]. International Journal of Agricultural and Biological Engineering, 2018, 11: 5-12. | 57 | TANG Q, ZHANG R, CHEN L, et al. High-accuracy, high-resolution downwash flow field measurements of an unmanned helicopter for precision agriculture[J]. Computers and Electronics in Agriculture, 2020, 173: ID 105390. |
|