Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 121-134.doi: 10.12133/j.smartag.SA202201013
收稿日期:
2021-08-25
出版日期:
2022-06-30
基金项目:
作者简介:
高 振(1995-),男,博士研究生,研究方向为光学传感和拉曼光谱技术及其应用系统研发等。E-mail:z@cau.edu.cn
通信作者:
董大明(1983-),男,博士,研究员,研究方向为红外与激光光谱技术在环境监测和农业中的应用。E-mail:dongdm@nercita.org.cn
GAO Zhen1,2(), ZHAO Chunjiang1,2, YANG Guiyan2, DONG Daming2(
)
Received:
2021-08-25
Online:
2022-06-30
Foundation items:
National Natural Science Foundation of China (32101609); Beijing Natural Science Foundation (JQ19023)
About author:
GAO Zhen, E-mail:z@cau.edu.cn
Corresponding author:
DONG Daming, E-mail:dongdm@nercita.org.cn
摘要:
拉曼光谱是一种散射光谱,具有快速、不易受水分干扰、样品无需预处理和在体检测等特点,可作为分析、测试物质分子成分和结构强有力的表征手段。随着拉曼光谱技术的不断发展,其在农业检测领域中逐渐发挥出极其重要的作用。本文概述了拉曼光谱的检测原理,从共聚焦显微拉曼光谱、傅里叶变换拉曼光谱、表面增强拉曼光谱、针尖增强拉曼光谱、共振拉曼光谱、空间偏移拉曼光谱、移频激发拉曼差分光谱、基于非线性光学的拉曼光谱等8个方面介绍了拉曼光谱技术,重点总结了拉曼光谱技术在植物检测、土壤检测、水质检测、食品检测等方面的应用研究进展,并提出了其在农业检测领域中应用需要解决的难题和未来的发展方向,以期对未来农业生产和研究带来启发。
中图分类号:
高振, 赵春江, 杨桂燕, 董大明. 典型拉曼光谱技术及其在农业检测中应用研究进展[J]. 智慧农业(中英文), 2022, 4(2): 121-134.
GAO Zhen, ZHAO Chunjiang, YANG Guiyan, DONG Daming. Typical Raman Spectroscopy Ttechnology and Research Progress in Agriculture Detection[J]. Smart Agriculture, 2022, 4(2): 121-134.
1 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业(中英文), 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
2 | RAMAN C V. A new radiation[J]. Indian Journal of physics, 1928, 2: 387-398. |
3 | GRAVES P, GARDINER D. Practical Raman spectroscopy[M]. Heidelberg: Springer Berlin, 1989. |
4 | SMEKAL A. Zur quantentheorie der dispersion[J]. Naturwissenschaften, 1923, 11(43): 873-875. |
5 | RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502. |
6 | PUPPELS G J, DE MUL F F M, OTTO C, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 1990, 347(6290): 301-303. |
7 | LEW T T S, SAROJAM R, JANG I C, et al. Species-independent analytical tools for next-generation agriculture[J]. Nature Plants, 2020, 6(12): 1408-1417. |
8 | CHASE D B. Fourier transform Raman spectroscopy[J]. Journal of the American Chemical Society, 1986, 108(24): 7485-7488. |
9 | OZAKI Y, CHO R, IKEGAYA K, et al. Potential of near-infrared Fourier transform Raman spectroscopy in food analysis[J]. Applied Spectroscopy, 1992, 46(10): 1503-1507. |
10 | CHASE B. Fourier transform Raman spectroscopy[J]. Analytical Chemistry, 1987, 59(14): 881A-890A. |
11 | DZSABER S, NEGYEDI M, BERNÁTH B, et al. A Fourier transform Raman spectrometer with visible laser excitation[J]. Journal of Raman Spectroscopy, 2015, 46(3): 327-332. |
12 | FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. |
13 | BAN R, YU Y, ZHANG M, et al. Synergetic SERS enhancement in a metal-like/metal double-shell structure for sensitive and stable application[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13564-13570. |
14 | WENG S, HU X, WANG J, et al. Advanced application of Raman spectroscopy and surface-enhanced Raman spectroscopy in plant disease diagnostics: A review[J]. Journal of Agricultural and Food Chemistry, 2021, 69(10): 2950-2964. |
15 | DAS R S, AGRAWAL Y K. Raman spectroscopy: Recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176. |
16 | BAILO E, DECKERT V. Tip-enhanced Raman scattering[J]. Chemical Society Reviews, 2008, 37(5): 921-930. |
17 | HE Z, QIU W, KIZER M E, et al. Resolving the sequence of RNA strands by Tip-Enhanced Raman Spectroscopy[J]. ACS Photonics, 2020, 8(2): 424-430. |
18 | SACCO A, MANGINO S, PORTESI C, et al. Novel approaches in tip-enhanced Raman spectroscopy: Accurate measurement of enhancement factors and pesticide detection in tip dimer configuration[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24723-24730. |
19 | NEUGEBAUER U, RÖSCH P, SCHMITT M, et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy[J]. ChemPhysChem, 2006, 7(7): 1428-1430. |
20 | CIALLA D, DECKERT‐GAUDIG T, BUDICH C, et al. Raman to the limit: Tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus[J]. Journal of Raman Spectroscopy, 2009, 40(3): 240-243. |
21 | DAS R S, AGRAWAL Y K. Raman spectroscopy: Recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176. |
22 | STROMMEN D P, NAKAMOTO K. Resonance Raman spectroscopy[J]. Journal of Chemical Education, 1977, 54(8): 474. |
23 | ROBERT B. Resonance Raman spectroscopy[J]. Photosynthesis Research, 2009, 101(2): 147-155. |
24 | LU L, SHI L, SECOR J, et al. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 179: 18-22. |
25 | MERLIN J C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems[J]. Pure and Applied Chemistry, 1985, 57(5): 785-792. |
26 | AFSETH N K, BLOOMFIELD M, WOLD J P, et al. A novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS)[J]. Applied Spectroscopy, 2014, 68(2): 255-262. |
27 | MOREY R, ERMOLENKOV A, PAYNE W Z, et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2020, 412(19): 4585-4594. |
28 | MOSCA S, CONTI C, STONE N, et al. Spatially offset Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1(1): 1-16. |
29 | MOSIER-BOSS P A, LIEBERMAN S H, NEWBERY R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques[J]. Applied Spectroscopy, 1995, 49(5): 630-638. |
30 | SOWOIDNICH K, VOGEL S, MAIWALD M, et al. Determination of soil constituents using shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 2022, 76(6): 712-722. |
31 | TOLLES W M, NIBLER J W, MCDONALD J R, et al. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS)[J]. Applied Spectroscopy, 1977, 31(4): 253-271. |
32 | FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861. |
33 | LITTLEJOHN G R, MANSFIELD J C, PARKER D, et al. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy[J]. Plant physiology, 2015, 168(1): 18-28. |
34 | ZENG Y, SAAR B G, FRIEDRICH M G, et al. Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy[J]. BioEnergy Research, 2010, 3(3): 272-277. |
35 | KHODABAKHSHIAN R, ABBASPOUR-FARD M H. Pattern recognition-based Raman spectroscopy for non-destructive detection of pomegranates during maturity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: ID 118127. |
36 | QIN J, CHAO K, KIM M S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy[J]. Postharvest Biology and Technology, 2012, 71: 21-31. |
37 | MOREY R, ERMOLENKOV A, PAYNE W Z, et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 4585-4594. |
38 | FARBER C, SANCHEZ L, RIZEVSKY S, et al. Raman spectroscopy enables non-invasive identification of peanut genotypes and value-added traits[J]. Scientific reports, 2020, 10(1): 1-10. |
39 | JENTZSCH P V, CIOBOTA V, SALINAS W, et al. Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy[J]. Food Chemistry, 2016, 211: 274-280. |
40 | KRIMMER M, FARBER C, KUROUSKI D. Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer[J]. ACS Omega, 2019, 4(15): 16330-16335. |
41 | 张燕燕, 李灿, 苏睿, 等. 利用表面增强拉曼光谱定量检测植物激素脱落酸[J]. 智慧农业(中英文), 2022, 4(1): 121. |
ZHANG Y, LI C, SU R, et al. Quantitative determination of plant hormone abscisic acid using surface enhanced Raman spectroscopy[J]. Smart Agriculture, 2022, 4(1): 121-129. | |
42 | SCHULZ H, BARANSKA M, BARANSKI R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis[J]. Biopolymers: Original Research on Biomolecules, 2005, 77(4): 212-221. |
43 | MU T, WANG S, LI T, et al. Detection of pesticide residues using Nano-SERS chip and a smartphone-based Raman sensor[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(2): 1-6. |
44 | FISCHER S, SCHENZEL K, FISCHER K, et al. Applications of FT Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials[C]// Macromolecular Symposia. Weinheim: WILEY‐VCH Verlag, 2005, 223(1): 41-56. |
45 | BARSBERG S, MATOUSEK P, TOWRIE M. Structural analysis of lignin by resonance Raman spectroscopy[J]. Macromolecular Bioscience, 2005, 5(8): 743-752. |
46 | OLIVEIRA D M, MOTA T R, GRANDIS A, et al. Lignin plays a key role in determining biomass recalcitrance in forage grasses[J]. Renewable Energy, 2020, 147: 2206-2217. |
47 | HUANG C, SINGH G P, PARK S H, et al. Early diagnosis and management of nitrogen deficiency in plants utilizing Raman spectroscopy[J]. Frontiers in Plant Science, 2020, 11: ID 663. |
48 | SANCHEZ L, ERMOLENKOV A, BISWAS S, et al. Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice[J]. Frontiers in Plant Science, 2020, 11: ID 1620. |
49 | GUPTA S, HUANG C H, SINGH G P, et al. Portable Raman leaf-clip sensor for rapid detection of plant stress[J]. Scientific Reports, 2020, 10(1): 1-10. |
50 | ZHAO X, CAI L. Early detection of zinc deficit with confocal Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(10): 1706-1712. |
51 | SANCHEZ L, FARBER C, LEI J, et al. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer[J]. Analytical Chemistry, 2019, 91(3): 1733-1737. |
52 | SANCHEZ L, ERMOLENKOV A, TANG X, et al. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer[J]. Planta, 2020, 251(3): 1-6. |
53 | SANCHEZ L, PANT S, MANDADI K, et al. Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics[J]. Scientific Reports, 2020, 10(1): 1-10. |
54 | LIN Y, LIN H, LIN Y. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan[J]. PloS One, 2020, 15(3): ID e0230330 |
55 | 代芬, 邱泽源, 邱倩, 等. 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业, 2019, 1(3): 77-86. |
DAI F, QIU Z, QIU Q, et al. Rapid detection of citrus Huanglongbing using Raman spectroscopy and Auto-fluorescence spectroscopy[J]. Smart Agriculture, 2019, 1(3): 77-86. | |
56 | TIMCHENKO E V, TIMCHENKO P E, ZHERDEVA L A, et al. Raman spectroscopy for the control of soil contamination by copper ions[C]// Journal of Physics: Conference Series. Samara, Russia, IOP Publishing, 2015, 643(1): ID 012032. |
57 | ZHANG C, ZHU J, LI J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398. |
58 | LIN X, LIN S, LIU Y, et al. Lab-on-paper surface-enhanced Raman spectroscopy platform based on self-assembled Au@ Ag nanocube monolayer for on-site detection of thiram in soil[J]. Journal of Raman Spectroscopy, 2019, 50(7): 916-925. |
59 | NIE P, DONG T, XIAO S, et al. Quantitative determination of thiabendazole in soil extracts by surface-enhanced Raman spectroscopy[J]. Molecules, 2018, 23(8): ID 1949. |
60 | RUBIRA R J G, CAMACHO S A, CONSTANTINO C J L, et al. Increasing the sensitivity of surface‐enhanced Raman scattering detection for s‐triazine pesticides by taking advantage of interactions with soil humic substances[J]. Journal of Raman Spectroscopy, 2022, 53(1): 40-48. |
61 | LI H, BI Q, YANG K, et al. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 2239-2246. |
62 | SCHWARZ M, KLOß S, STÖCKEL S, et al. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2017, 409(15): 3779-3788. |
63 | DONG T, XIAO S, HE Y, et al. Rapid and quantitative determination of soil water-soluble nitrogen based on surface-enhanced Raman spectroscopy analysis[J]. Applied Sciences, 2018, 8(5): ID 701. |
64 | VOGEL C, ADAM C, MCNAUGHTON D. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy[J]. Applied Spectroscopy, 2013, 67(9): 1101-1105. |
65 | VOGEL C, RIVARD C, TANABE I, et al. Microspectroscopy–promising techniques to characterize phosphorus in soil[J]. Communications in Soil Science and Plant Analysis, 2016, 47(18): 2088-2102. |
66 | LIU Y, SHI Y, CAI L, et al. Determination of copper, zinc, cadmium and lead in water using co-precipitation method and Raman spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): ID 1350021. |
67 | HU Y, LIAO J, WANG D, et al. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection[J]. Analytical chemistry, 2014, 86(8): 3955-3963. |
68 | MARIÑO-LOPEZ A, SOUSA-CASTILLO A, BLANCO-FORMOSO M, et al. Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters[J]. ChemNanoMat, 2019, 5(1): 46-50. |
69 | ESCORIZA M F, VANBRIESEN J M, STEWART S, et al. Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria[J]. Journal of Microbiological Methods, 2006, 66(1): 63-72. |
70 | YANG C, SHI X, YUAN J. Study on the application of Raman spectroscopy on detecting water hardness[J]. Water Environment Research, 2014, 86(5): 417-420. |
71 | LI Z, WANG J, LI D. Applications of Raman spectroscopy in detection of water quality[J]. Applied Spectroscopy Reviews, 2016, 51(4): 333-357. |
72 | LI Z, DEEN M J, KUMAR S, et al. Raman spectroscopy for in-line water quality monitoring—Instrumentation and potential[J]. Sensors, 2014, 14(9): 17275-17303. |
73 | REN X, LING W, TIAN Z, et al. Study on practical Raman Lidar seawater temperature remote sensing system[J]. Spectroscopy and Spectral Analysis, 39(3): ID 778. |
74 | LEONARD D A, CAPUTO B, GUAGLIARDO J L, et al. Remote sensing of subsurface water temperature by laser Raman spectroscopy[C]// Proceedings Volume 0208, Ocean Optics VI. Monterey, United States, Society of Photo-Optical Instrumentation Engineers (SPIE). 1980, 208: 198-205. |
75 | KONG L, HUANG M, CHEN J, et al. In situ detection of thiram in fruits and vegetables by colorimetry/surface-enhanced Raman spectroscopy[J]. Laser Physics, 2020, 30(6): ID 065602. |
76 | HU B, SUN D W, PU H, et al. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method[J]. Talanta, 2020, 217: ID 120998. |
77 | DHAKAL S, PENG Y, LI Y, et al. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy[C]// Sensing for Agriculture and Food Quality and Safety VI. Baltimore, United States, Society of Photo-Optical Instrumentation Engineers (SPIE), 2014. |
78 | 张莎, 刘木华, 陈金印, 等. 采用表面增强拉曼光谱技术快速检测脐橙果皮中抑霉唑残留[J]. 智慧农业(中英文), 2021, 3(4): 42-52. |
ZHANG S, LIU M, CHEN J, et al. Rapid detection of Imazalil residues in navel orange peel using surface-enhanced Raman spectroscopy[J]. Smart Agriculture, 2021, 3(4): 42-52. | |
79 | TSAGKARIS A S, PULKRABOVA J, HAJSLOVA J. Optical screening methods for pesticide residue detection in food matrices: Advances and emerging analytical trends[J]. Foods, 2021, 10(1): ID 88. |
80 | ZHAO J, LIU P, YUAN H, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. Journal of Spectroscopy, 2016: ID 1845237. |
81 | GIRMATSION M, MAHMUD A, ABRAHA B, et al. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: A review[J]. Food Control, 2021, 126: ID 108019. |
82 | JOSHI R, LOHUMI S, JOSHI R, et al. Raman spectral analysis for non-invasive detection of external and internal parameters of fake eggs[J]. Sensors and Actuators B: Chemical, 2020, 303: 127243. |
83 | OROIAN M, ROPCIUC S, PADURET S. Honey adulteration detection using Raman spectroscopy[J]. Food analytical methods, 2018, 11(4): 959-968. |
84 | XU Y, ZHONG P, JIANG A, et al. Raman spectroscopy coupled with chemometrics for food authentication: A review[J]. TrAC Trends in Analytical Chemistry, 2020: ID 116017. |
85 | AHMAD N, SALEEM M, AHMED M, et al. Heating effects of desi ghee using Raman spectroscopy[J]. Applied Spectroscopy, 2018, 72(6): 833-846. |
86 | VELIOĞLU H M, TEMIZ H T, BOYACI I H. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis[J]. Food Chemistry, 2015, 172: 283-290. |
87 | FOWLER S M, SCHMIDT H, VAN DE VEN R, et al. Predicting tenderness of fresh ovine semimembranosus using Raman spectroscopy[J]. Meat Science, 2014, 97(4): 597-601. |
88 | KIZIL R, IRUDAYARAJ J. Discrimination of irradiated starch gels using FT-Raman spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1): 13-18. |
89 | THEURER L S, MAIWALD M, SUMPF B. Shifted excitation Raman difference spectroscopy: A promising tool for the investigation of soil[J]. European Journal of Soil Science, 2021, 72(1): 120-124. |
90 | ZHANG Z, CHEN S, LIANG Y. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146. |
91 | CHEN N, XIAO T H, LUO Z, et al. Porous carbon nanowire array for surface-enhanced Raman spectroscopy[J]. Nature Communications, 2020, 11(1): 1-8. |
92 | CHEN F, CHEN C, CHEN C, et al. Application of PLSR in rapid detection of glucose in sheep serum[J]. Optik, 2020, 224: ID 165734. |
[1] | 白更, 葛玉峰. 作物胁迫感知和植物表型测量系统综述[J]. 智慧农业(中英文), 2023, 5(1): 66-81. |
[2] | 张燕燕, 李灿, 苏睿, 李林泽, 位文涛, 李保磊, 胡建东. 利用表面增强拉曼光谱定量检测植物激素脱落酸[J]. 智慧农业(中英文), 2022, 4(1): 121-129. |
[3] | 郭志明, 王郡艺, 宋烨, 邹小波, 蔡健荣. 果蔬品质劣变传感检测与监测技术研究进展[J]. 智慧农业(中英文), 2021, 3(4): 14-28. |
[4] | 张莎, 刘木华, 陈金印, 赵进辉. 采用表面增强拉曼光谱技术快速检测脐橙果皮中抑霉唑残留[J]. 智慧农业(中英文), 2021, 3(4): 42-52. |
[5] | 陈梅香, 张瑞瑞, 陈立平, 唐青, 夏浪. 无人机农林业应用全球研究态势分析[J]. 智慧农业(中英文), 2021, 3(3): 22-37. |
[6] | 赵欢, 王璟璐, 廖生进, 张颖, 卢宪菊, 郭新宇, 赵春江. 基于Micro-CT的玉米籽粒显微表型特征研究[J]. 智慧农业(中英文), 2021, 3(1): 16-28. |
[7] | 徐凌翔, 陈佳玮, 丁国辉, 卢伟, 丁艳锋, 朱艳, 周济. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42. |
[8] | 刘守阳, 金时超, 郭庆华, 朱艳, Baret Fred. 基于数字化植物表型平台(D3P)的田间小麦冠层光截获算法开发[J]. 智慧农业(中英文), 2020, 2(1): 87-98. |
[9] | 代芬, 邱泽源, 邱倩, 刘楚健, 黄国增, 黄雅琳, 邓小玲. 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业(中英文), 2019, 1(3): 77-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||