1 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7.
|
2 |
AGAH A E, MEIRE P, DE DECKERE E. Laboratory calibration of TDR probes for simultaneous of measurements soil water content and electrical conductivity[J]. Communications in soil science and plant analysis, 2019, 50(13): 1525-1540.
|
3 |
PENG W, LU Y L, WANG M M, et al. Determining water content and bulk density: The heat-pulse method outperforms the thermo-TDR method in high-salinity soils[J]. Geoderma, 2022, 407: ID 115564.
|
4 |
陈栋, 温宗周. 基于频域反射法的土壤水分传感器设计[J]. 电子测量技术, 2016, 39(3): 106-109.
|
|
CHEN D, WEN Z Z. Design of soil moisture sensor based on principle of frequency domainreflectometry[J]. Electronic measurement technology, 2016, 39(3): 106-109.
|
5 |
常丹, 李旭, 刘建坤, 等. 土体含水率测量方法研究进展及比较[J]. 工程勘察, 2014, 42(9): 17-22, 35.
|
|
CHANG D, LI X, LIU J K, et al. Study progress and comparison of soil moisture content measurement methods[J]. Geotechnical investigation & surveying, 2014, 42(9): 17-22, 35.
|
6 |
SU S L, SINGH D N, SHOJAEI BAGHINI M. A critical review of soil moisture measurement[J]. Measurement, 2014, 54: 92-105.
|
7 |
张萌. 阵列式电容传感器探测土壤水分方法研究[D]. 西安: 西安理工大学, 2019.
|
|
ZHANG M. Research on array capacitive sensor for detecting soil moisture[D].Xi'an: Xi'an University of Technology, 2019.
|
8 |
JORAPUR N, PALAPARTHY V S, SARIK S, et al. A low-power, low-cost soil-moisture sensor using dual-probe heat-pulse technique[J]. Sensors and actuators A: Physical, 2015, 233: 108-117.
|
9 |
ARAVIND P, GURAV M, MEHTA A, et al., A wireless multi-sensor system for soil moisture measurement[C]// 2015 IEEE Sensors, Piscataway, New Jersey, USA: IEEE, 2015: 1-4.
|
10 |
ZHAO D Y, WANG Y B, SHAO J, et al. Temperature and humidity sensor based on MEMS technology[J]. AIP advances, 2021, 11(8): ID 085126
|
11 |
BINDRA P, HAZRA A. Capacitive gas and vapor sensors using nanomaterials[J]. Journal of materials science: Materials in electronics, 2018, 29(8): 6129-6148.
|
12 |
PATIL S J, ADHIKARI A, BAGHINI M S, et al. An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection[J]. Sensors and actuators B: Chemical, 2014, 203: 165-173.
|
13 |
KHODAKARIMI S, HEKHMATSHOAR M H, NASIRI M, et al. Effects of process and post-process treatments on the electrical conductivity of the PEDOT: PSS films[J]. Journal of materials science: Materials in electronics, 2016, 27(2): 1278-1285.
|
14 |
SHEN Y B, WANG W, FAN A F, et al. Highly sensitive hydrogen sensors based on SnO2 nanomaterials with different morphologies[J]. International journal of hydrogen energy, 2015, 40(45): 15773-15779
|
15 |
SANDEEP G S, SARAVANAN Y, ESWARAIAH V, et al. An in-field integrated capacitive sensor for rapid detection and quantification of soil moisture[J]. Sensors and actuators B: chemical, 2020, 321: ID 128542.
|
16 |
TAN Y H, YU K, YANG T, et al. The combinations of hollow MoS2 micro@nano-spheres: One-step synthesis, excellent photocatalytic and humidity sensing properties[J]. J mater chem C, 2014, 2(27): 5422-5430.
|
17 |
陈心笛. 基于可溶性聚酰亚胺电容型湿度传感器的研制[D]. 上海: 东华大学, 2014.
|
|
CHEN X D. Manufacture of capacitive humidity sensor based on soluble polyimides[D]. Shanghai: Donghua University, 2014.
|
18 |
ITOH E, TAKADA A. Fabrication of fast, highly sensitive all-printed capacitive humidity sensors with carbon nanotube/polyimide hybrid electrodes[J]. Japanese journal of applied physics, 2016, 55(2S): ID 02BB10.
|
19 |
ROCHA ROBLEDO A K, FLORES SALAZAR M, MUÑIZ MARTÍNEZ B A, et al. Interlayer charge transfer in supported and suspended MoS2/Graphene/MoS2 vertical heterostructures[J]. PLoS One, 2023, 18(7): ID e0283834.
|
20 |
LU Z, GONG Y Q, LI X J, et al. MoS2-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response[J]. Applied surface science, 2017, 399: 330-336.
|
21 |
MOLINA-LOPEZ F, KINKELDEI T, BRIAND D, et al. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates[J]. Journal of applied physics, 2013, 114(17): ID 174907.
|
22 |
黄锡伟, 戴海燕, 胡乐祥, 等. 基于COMSOL Multiphysics的动力电池组散热仿真[J]. 汽车实用技术, 2022, 47(6): 1-9.
|
|
HUANG X W, DAI H Y, HU L X, et al. Simulation of power battery pack heat dissipation based on COMSOL multiphysics[J]. Automobile applied technology, 2022, 47(6): 1-9.
|
23 |
SIDDIQUI M S, MANDAL A, KALITA H, et al. Highly sensitive few-layer MoS2 nanosheets as a stable soil moisture and humidity sensor[J]. Sensors and actuators B: chemical, 2022, 365: ID 131930.
|
24 |
ZHENG Z, YAO Y, SUN Y H, et al. Development of a highly sensitive humidity sensor based on the capacitive micromachined ultrasonic transducer[J]. Sensors and actuators B: Chemical, 2019, 286: 39-45.
|
25 |
ZHANG D Z, TONG J, XIA B K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly[J]. Sensors and actuators B: Chemical, 2014, 197: 66-72.
|