1 |
刘凌云, 周宇, 陈华, 等. 秀珍菇研究进展[J]. 微生物学通报, 2020, 47(11): 3650-3657.
|
|
LIU L Y, ZHOU Y, CHEN H, et al. Research progress of Pleurotus geesteranus [J]. Microbiology China, 2020, 47(11): 3650-3657.
|
2 |
徐云碧. 作物科学中的环境型鉴定(Envirotyping)及其应用[J]. 中国农业科学, 2015, 48(17): 3354-3371.
|
|
XU Y B. Envirotyping and its applications in crop science[J]. Scientia agricultura sinica, 2015, 48(17): 3354-3371.
|
3 |
T/GXEFA 0002—2022.富硒秀珍菇生产技术规程 [S]. 广西: 广西食用菌协会, 2022.
|
4 |
YIN H, YI W L, HU D M, Computer vision and machine learning applied in the mushroom industry: A critical review[J]. Computers and electronics in agriculture, 2022, 198: ID 107015.
|
5 |
王玲, 徐伟, 杜开炜, 等. 基于SR300深度相机的褐蘑菇原位测量技术[J]. 农业机械学报, 2018, 49(12): 13-19, 108.
|
|
WANG L, XU W, DU K W, et al. Portabella mushrooms measurement in situ based on SR300 depth camera[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(12): 13-19, 108.
|
6 |
LIU Q, FANG M, LI Y S, et al. Deep learning based research on quality classification of shiitake mushrooms[J]. LWT, 2022, 168: ID 113902.
|
7 |
YIN H A, XU J L, WANG Y L, et al. A novel method of situ measurement algorithm for Oudemansiella raphanipies caps based on YOLOv4 and distance filtering[J]. Agronomy, 2022, 13(1): ID 134.
|
8 |
黄星奕, 姜爽, 陈全胜, 等. 基于机器视觉技术的畸形秀珍菇识别[J]. 农业工程学报, 2010, 26(10): 350-354.
|
|
HUANG X Y, JIANG S, CHEN Q S, et al. Identification of defect Pleurotus geesteranus based on computer vision[J]. Transactions of the Chinese society of agricultural engineering, 2010, 26(10): 350-354.
|
9 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(2): 386-397.
|
10 |
REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 658-666.
|
11 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(8): 2011-2023.
|
12 |
HOU Q B, ZHOU D Q, FENG J S. Coordinateattention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021.
|
13 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020.
|
14 |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: A simple, parameter-free attention module for convolutional neural networks[C]// International Conference on Machine Learning. New York, USA: PMLR, 2021: 11863-11874.
|
15 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018.
|
16 |
俞林森, 陈志国. 融合前景注意力的轻量级交通标志检测网络[J]. 电子测量与仪器学报, 2023, 37(1): 21-31.
|
|
YU L S, CHEN Z G. Lightweight traffic sign detection network with fused foreground attention[J]. Journal of electronic measurement and instrumentation, 2023, 37(1): 21-31.
|
17 |
ZHENG Z Z, HU Y H, YANG H B, et al. AFFU-Net: Attention feature fusion U-net with hybrid loss for winter jujube crack detection[J]. Computers and electronics in agriculture, 2022, 198: ID 107049.
|
18 |
ZHANG Z Y. Aflexible new technique for camera calibration[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334.
|
19 |
YANG S, ZHENG L H, YANG H J, et al. A synthetic datasets based instance segmentation network for high-throughput soybean pods phenotype investigation[J]. Expert systems with applications, 2022, 192: ID 116403.
|
20 |
周丽, 冯百明, 关煜, 等. 面向智能手机拍摄的变形文档图像校正[J]. 计算机工程与科学, 2022, 44(1): 102-109.
|
|
ZHOU L, FENG B M, GUAN Y, et al. Correcting distorted document images on smartphones[J]. Computer engineering & science, 2022, 44(1): 102-109.
|
21 |
ROTHER C, KOLMOGOROV V, BLAKE A. "GrabCut": Interactive foreground extraction using iterated graph cuts[J]. ACM transactions on graphics, 23(3): 309-314.
|
22 |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: Real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 9157-9166.
|
23 |
FANG H S, SUN J H, WANG R Z, et al. InstaBoost: Boosting instance segmentation via probability map guided copy-pasting[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 682-691.
|
24 |
FANG Y X, YANG S S, WANG X G, et al. QueryInst: Parallelly supervised mask query for instance segmentation[EB/OL]. arXiv: 2105.01928, 2021.
|
25 |
朱怡航, 张小斌, 沈颖越, 等. 基于图像识别技术的金针菇表型高通量采集与分析[J]. 菌物学报, 2021, 40(3): 626-640.
|
|
ZHU Y H, ZHANG X B, SHEN Y Y, et al. High-throughput phenotyping collection and analysis of Flammulina filiformis based on image recognition technology[J]. Mycosystema, 2021, 40(3): 626-640.
|