1 |
HU H M, KAIZU Y, ZHANG H D, et al. Recognition and localization of strawberries from 3D binocular cameras for a strawberry picking robot using coupled YOLO/Mask R-CNN[J]. International journal of agricultural and biological engineering, 2022, 15(6): 175-179.
|
2 |
FAN Y C, ZHANG S Y, FENG K, et al. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5[J]. Sensors, 2022, 22(2): ID 419.
|
3 |
FAN J C, ZHANG Y, WEN W L, et al. The future of internet of things in agriculture: Plant high-throughput phenotypic platform[J]. Journal of cleaner production, 2021, 280: ID 123651.
|
4 |
张日红, 区建爽, 李小敏, 等. 基于改进YOLOv4的轻量化菠萝苗心检测算法[J]. 农业工程学报, 2023, 39(4): 135-143.
|
|
ZHANG R H, OU J S, LI X M, et al. Lightweight algorithm for pineapple plant center detection based on improved an YOLOv4 model[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(4): 135-143.
|
5 |
ATEFI A, GE Y F, PITLA S, et al. Robotic technologies for high-throughput plant phenotyping: Contemporary reviews and future perspectives[J]. Frontiers in plant science, 2021, 12: ID 611940.
|
6 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7.
|
7 |
LI Y L, WEN W L, FAN J C, et al. Multi-source data fusion improves time-series phenotype accuracy in maize under a field high-throughput phenotyping platform[J]. Plant phenomics, 2023, 5: ID 0043.
|
8 |
XIAO D Y, GONG L, LIU C L, et al. Phenotype-based robotic screening platform for leafy plant breeding[J]. IFAC-Papers on line, 2016, 49(16): 237-241.
|
9 |
WEYLER J, MILIOTO A, FALCK T, et al. Joint plant instance detection and leaf count estimation for In-field plant phenotyping[J]. IEEE robotics and automation letters, 2021, 6(2): 3599-3606.
|
10 |
WANG Y Q, FAN J C, YU S, et al. Research advance in phenotype detection robots for agriculture and forestry[J]. International journal of agricultural and biological engineering, 2023, 16(1): 14-25.
|
11 |
SENDEN J, JANSSEN L, VAN DER KRUK R, et al. Exploiting plant dynamics in robotic fruit localization[J]. Computers and electronics in agriculture, 2022, 196: ID 106860.
|
12 |
ABBAS A, JAIN S, GOUR M, et al. Tomato plant disease detection using transfer learning with C-GAN synthetic images[J]. Computers and electronics in agriculture, 2021, 187: ID 106279.
|
13 |
WIDIYANTO S, NUGROHO D P, DARYANTO A, et al. Monitoring the growth of tomatoes in real time with deep learning-based image segmentation[J]. International journal of advanced computer science and applications, 2021, 12(12): 353-358.
|
14 |
RAMIN SHAMSHIRI R, WELTZIEN C, HAMEED I A, et al. Research and development in agricultural robotics: A perspective of digital farming[J]. International journal of agricultural and biological engineering, 2018, 11(4): 1-11.
|
15 |
李兴旭, 陈雯柏, 王一群, 等. 基于级联视觉检测的樱桃番茄自动采收系统设计与试验[J]. 农业工程学报, 2023, 39(1): 136-145.
|
|
LI X X, CHEN W B, WANG Y Q, et al. Design and experiment of an automatic cherry tomato harvesting system based on cascade visual detection[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(1): 136-145.
|
16 |
朱志英. 基于STM32的地空两用农业信息采集机器人研究[J]. 农机化研究, 2021, 43(5): 68-72.
|
|
ZHU Z Y. Research on ground-to-air dual-purpose agricultural information collection robot based on STM32[J]. Journal of agricultural mechanization research, 2021, 43(5): 68-72.
|
17 |
LI X Y, ZHANG Y L, WU J M, et al. Challenges and opportunities in bioimage analysis[J]. Nature methods, 2023, 20: 958-961.
|
18 |
BUZZY M, THESMA V, DAVOODI M, et al. Real-time plant leaf counting using deep object detection networks[J]. Sensors, 2020, 20(23): ID 6896.
|
19 |
YAN B, FAN P, LEI X Y, et al. A real-time apple targets detection method for picking robot based on improved YOLOv5[J]. Remote sensing, 2021, 13(9): ID 1619.
|
20 |
杨文姬, 胡文超, 赵应丁, 等. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115.
|
|
YANG W J, HU W C, ZHAO Y D, et al. Research on plant disease detection algorithm based on improved Yolov5[J]. Journal of Chinese agricultural mechanization, 2023, 44(1): 108-115.
|
21 |
GE Z, LIU S, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. arXiv:2107.08430[cs], 2021.
|
22 |
李康顺,杨振盛,江梓锋,等. 基于改进 YOLOX-Nano 的农作物叶片病害检测与识别方法[J]. 华南农业大学学报, 2023, 44(4): 593-603.
|
|
LI K S, YANG Z S, JIANG Z F, et al. A detection and recognition method for crop leaf diseases based on improved YOLOX Nano[J]. Journal of South China agricultural university, 2023, 44(4): 593-603.
|
23 |
SCHARR H, MINERVINI M, FRENCH A P, et al. Leaf segmentation in plant phenotyping: A collation study[J]. Machine vision and applications, 2016, 27(4): 585-606.
|
24 |
LEE U, CHANG S, PUTRA G A, et al. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis[J]. PLoS one, 2018, 13(4): ID e0196615.
|
25 |
OISHI Y, HABARAGAMUWA H, ZHANG Y, et al. Automated abnormal potato plant detection system using deep learning models and portable video cameras[J]. International journal of applied earth observation and geoinformation, 2021, 104: ID 102509.
|
26 |
张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17.
|
|
ZHANG H C, ZHOU H P, ZHENG J Q, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(3): 1-17.
|
27 |
CHEN H, SUN K Y, TIAN Z, et al. BlendMask: top-down meets bottom-up for instance segmentation[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 8570-8578.
|
28 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2961-2969.
|
29 |
WANG D B, SONG Z, MIAO T, et al. DFSP: A fast and automatic distance field-based stem-leaf segmentation pipeline for point cloud of maize shoot[J]. Frontiers in plant science, 2023, 14: ID 1109314.
|
30 |
CARISSE O, BOUCHARD J. Age-related susceptibility of strawberry leaves and berries to infection by Podosphaera aphanis [J]. Crop protection, 2010, 29(9): 969-978.
|
31 |
FARJON G, ITZHAKY Y, KHOROSHEVSKY F, et al. Leaf counting: Fusing network components for improved accuracy[J]. Frontiers in plant science, 2021, 12: ID 575751.
|
32 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
33 |
ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2022: 2735-2745.
|
34 |
HUANG M F, XU G Q, LI J Y, et al. A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++[J]. Agriculture, 2021, 11(12): ID 1216.
|