1 |
孙新, 任翔渝, 郑洪超, 等. 基于参数迁移的领域命名实体识别方法[J]. 情报工程, 2022, 8(3): 13-27.
|
|
SUN X, REN X Y, ZHENG H C, et al. Domain named entity recognition method based on parameter transfer learning[J]. Technology intelligence engineering, 2022, 8(3): 13-27.
|
2 |
SILLA C N, FREITAS A A. A survey of hierarchical classification across different application domains[J]. Data mining and knowledge discovery, 2011, 22(1): 31-72.
|
3 |
冀振燕, 孔德焱, 刘伟, 等. 基于深度学习的命名实体识别研究[J]. 计算机集成制造系统, 2022, 28(6): 1603-1615.
|
|
JI Z Y, KONG D Y, LIU W, et al. Named entity recognition based on deep learning[J]. Computer integrated manufacturing systems, 2022, 28(6): 1603-1615.
|
4 |
ZHANG J, SHEN D, ZHOU G D, et al. Enhancing HMM-based biomedical named entity recognition by studying special phenomena[J]. Journal of biomedical informatics, 2004, 37(6): 411-422.
|
5 |
徐帅博. 基于枸杞病虫害知识图谱的问答系统研究与实现[D]. 银川: 宁夏大学, 2020.
|
|
XU S B. Research and implementation of question answering system based on knowledge map of diseases and pests in lycium barbarum [D]. Yinchuan: Ningxia University, 2020.
|
6 |
SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the association for computational linguistics, 2020, 8: 605-620.
|
7 |
ZHANG D M, ZHENG G, LIU H B, et al. AWdpCNER: Automated wdp Chinese named entity recognition from wheat diseases and pests text[J]. Agriculture, 2023, 13(6): 1220.
|
8 |
LI J, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[C]// Proceedings of the AAAI Conference on Artificial Intelligence.San Francisco, California, USA: AAAI, 2022, 36(10): 10965-10973.
|
9 |
ZHANG Z, HE D Z. Chinese named entity recognition method based on multi-granularity embedding[C]// 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Piscataway, New Jersey, USA: IEEE, 2022.
|
10 |
WU S, SONG X N, FENG Z H. MECT: Multi-metadata embedding based cross-transformer for chinese named entity recognition[EB/OL]. arXiv: 2107.05418, 2021.
|
11 |
LU W, ROTH D. Joint mention extraction and classification with mention hypergraphs[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, Commonwealth of Pennsylvania, USA: Association for Computational Linguistics, 2015.
|
12 |
WANG B L, LU W, WANG Y, et al. A neural transition-based model for nested mention recognition[EB/OL]. arXiv:1810.01808, 2018.
|
13 |
WANG J, SHOU L D, CHEN K, et al. Pyramid: A layered model for nested named entity recognition[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, Commonwealth of Pennsylvania, USA: Association for Computational Linguistics, 2020: 5918-5928.
|
14 |
OBAJA MUIS A, LU W. Labeling gaps between words: Recognizing overlapping mentions with mention separators[EB/OL]. arXiv: 1810.09073, 2018.
|
15 |
HE L, ZHANG Y, BA H F. Named entity recognition of exotic marine organisms based on attention mechanism and deep learning network[J]. Journal of Dalian ocean university, 2021, 36(3): 503-509.
|
16 |
金彦亮, 谢晋飞, 吴迪嘉. 基于分层标注的中文嵌套命名实体识别[J]. 上海大学学报(自然科学版), 2022, 28(2): 270-280.
|
|
JIN Y L, XIE J F, WU D J. Chinese nested named entity recognition based on hierarchical tagging[J]. Journal of Shanghai university (natural science edition), 2022, 28(2): 270-280.
|
17 |
LI X Y, FENG J R, MENG Y X, et al. A unified MRC framework for named entity recognition[EB/OL]. arXiv: 1910.11476, 2019.
|
18 |
SUN L, SUN Y X, JI F L, et al. Joint learning of token context and span feature for span-based nested NER[J]. IEEE/ACM transactions on audio, speech and language processing, 2020, 28: 2720-2730.
|
19 |
王泽儒, 柳先辉. 基于指针级联标注的中文实体关系联合抽取模型[J]. 武汉大学学报(理学版), 2022, 68(3): 304-310.
|
|
WANG Z R, LIU X H. Joint model of Chinese entity-relation extraction based on a pointer cascade tagging strategy[J]. Journal of Wuhan university (natural science edition), 2022, 68(3): 304-310.
|
20 |
LUAN Y, WADDEN D, HE L H, et al. A general framework for information extraction using dynamic span graphs[C]// Proceedings of the 2019 Conference of the North. Stroudsburg, Commonwealth of Pennsylvania, USA: Association for Computational Linguistics, 2019.
|
21 |
SU J L, AHMED M, LU Y, et al. RoFormer: Enhanced transformer with rotary position embedding[J]. Neurocomputing, 2024, 568: ID 127063.
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM, 2017: 6000-6010.
|
23 |
WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[EB/OL]. arXiv:1909.03227, 2019.
|
24 |
LIU Y G, ZHOU Y M, WEN S T, et al. A strategy on selecting performance metrics for classifier evaluation[J]. International journal of mobile computing and multimedia communications, 2014, 6(4): 20-35.
|
25 |
MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. New York, USA: ACM, 2013: 3111-3119.
|
26 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. arXiv:1810.04805, 2018.
|
27 |
LIU Y H, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. arXiv:1907.11692, 2019.
|
28 |
GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Bidirectional LSTM networks for improved phoneme classification and recognition[M]// Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 799-804.
|
29 |
LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]// Proceedings of the 18th International Conference on Machine Learning 2001 (ICML 2001). New York, USA: ACM, 2001: 282-289.
|
30 |
GRAVES A. Long short-term memory[M]// Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012: 37-45.
|
31 |
HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. arXiv: 1508.01991, 2015.
|
32 |
WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker: Single-stage joint extraction of entities and relations through token pair linking[EB/OL]. arXiv: 2010.13415, 2020.
|