1 |
齐秀娟, 郭丹丹, 王然, 等. 我国猕猴桃产业发展现状及对策建议[J]. 果树学报, 2020, 37(5): 754-763.
|
|
QI X J, GUO D D, WANG R, et al. Development status and suggestions on Chinese kiwifruit industry[J]. Journal of fruit science, 2020, 37(5): 754-763.
|
2 |
计洁, 金洲, 王儒敬, 等. 基于递进式卷积网络的农业命名实体识别方法[J]. 智慧农业(中英文), 2023, 5 (1): 122-131.
|
|
JI J, JIN Z, WANG R J, et al. Progressive convolutional net based method for agricultural named entity recognition[J]. Smart agriculture, 2023, 5(1): 122-131.
|
3 |
GOLSHAN P N, DASHTI H R, AZIZI S, et al. A study of recent contributions on information extraction[EB/OL]. arXiv:1803.056 67, 2018.
|
4 |
GUPTA N, SINGH S, ROTH D. Entity linking via joint encoding of types, descriptions, and context[C]// Proceedings of the 2017 Conference on Empirical Methods in NaturalLanguage Processing. San Diego, USA: ACL, 2017: 2681-2690.
|
5 |
GENG Z Q, CHEN G F, HAN Y M, et al. Semantic relation extraction using sequential and tree-structured LSTM with attention[J]. Information sciences, 2020, 509: 183-192.
|
6 |
JI B, LIU R, LI S S, et al. A hybrid approach for named entity recognition in Chinese electronic medical record[J]. BMC medical informatics and decision making, 2019, 19(2): ID 64.
|
7 |
张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172-178.
|
|
ZHANG S W, WANG Z, WANG Z L. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(12): 172-178.
|
8 |
刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340.
|
|
LIU L, WANG D B. A review on named entity recognition[J]. Journal of the China society for scientific and technical information, 2018, 37(3): 329-340.
|
9 |
赵继贵, 钱育蓉, 王魁, 等. 中文命名实体识别研究综述[J]. 计算机工程与应用, 2024, 60(1): 15-27.
|
|
ZHAO J G, QIAN Y R, WANG K, et al. Survey of Chinese named entity recognition research[J]. Computer engineering and applications, 2024, 60(1): 15-27.
|
10 |
杜晋华, 尹浩, 冯嵩. 中文电子病历命名实体识别的研究与进展[J]. 电子学报, 2022, 50(12): 3030-3053.
|
|
DU J H, YIN H, FENG S. Research and development of named entity recognition in Chinese electronic medical record[J]. Acta electronica sinica, 2022, 50(12): 3030-3053.
|
11 |
陈婕卿, 竹志超, 张锋, 等. 中文电子病历命名实体识别方法研究[J]. 医学信息学杂志, 2024, 45(4): 78-84.
|
|
CHEN J Q, ZHU Z C, ZHANG F, et al. Study on Named Entity Recognition of Chinese Electronic Medical Records[J]. Journal of medical informatics, 2024, 45(04): 78-84.
|
12 |
ZHANG Z Q, ZHENG X W, ZHANG J S. Machine reading comprehension based named entity recognition for medical text[J/OL]. Multimedia tools and applications, 2025. (2025-01-07)[2025-02-13].
|
13 |
张文东, 吴子炜, 宋国昌, 等. 基于SiKuBERT与多元数据嵌入的中医古籍命名实体识别[J]. 华南理工大学学报(自然科学版), 2024, 52(6): 128-137.
|
|
ZHANG W D, WU Z W, SONG G C, et al. Named entity recognition of traditional Chinese medicine classics based on SiKuBERT and multivariate data embedding[J]. Journal of South China university of technology (natural science edition), 2024, 52(6): 128-137.
|
14 |
聂啸林, 张礼麟, 牛当当, 等. 面向葡萄知识图谱构建的多特征融合命名实体识别[J]. 农业工程学报, 2024, 40(3): 201-210.
|
|
NIE X L, ZHANG L L, NIU D D, et al. Multi-feature fusion named entity recognition method for grape knowledge graph construction[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(3): 201-210.
|
15 |
毕达天, 张雪, 孔婧媛, 等. 基于异质图注意力网络与多特征融合的跨社交媒体用户识别研究[J]. 情报学报, 2024, 43(10): 1213-1226.
|
|
BI D T, ZHANG X, KONG J Y, et al. User identification across social media based on heterogeneous graph attention network and multi-feature fusion[J]. Journal of the China society for scientific and technical information, 2024, 43(10): 1213-1226.
|
16 |
ARAS G, MAKAROĞLU D, DEMIR S, et al. An evaluation of recent neural sequence tagging models in Turkish named entity recognition[J]. Expert systems with applications, 2021, 182: ID 115049.
|
17 |
DRURY B, ROCHE M. A survey of the applications of text mining for agriculture[J]. Computers and electronics in agriculture, 2019, 163: ID 104864.
|
18 |
李书琴, 张明美, 刘斌. 融合字词语义信息的猕猴桃种植领域命名实体识别研究[J]. 农业机械学报, 2022, 53(12): 323-331.
|
|
LI S Q, ZHANG M M, LIU B. Kiwifruit planting entity recognition based on character and word information fusion[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(12): 323-331.
|
19 |
ZHANG L L, NIE X L, ZHANG M M, et al. Lexicon and attention-based named entity recognition for kiwifruit diseases and pests: A Deep learning approach[J]. Frontiers in plant science, 2022, 13: ID 1053449.
|
20 |
季源泽, 李霏. CMNER: 基于微博的中文多模态实体识别数据集[J]. 计算机技术与发展, 2024, 34(10): 110-117.
|
|
JI Y Z, LI F. CMNER: A Chinese multimodal NER dataset based on weibo[J]. Computer technology and development, 2024, 34(10): 110-117.
|
21 |
XU Y, TAN X, TONG X, et al. A robust chinese named entity recognition method based on integrating dual-layer features and csbert[J]. Applied sciences, 2024, 14(3): ID 1060.
|
22 |
LIANG J Q, LI D C, LIN Y T, et al. Named entity recognition of Chinese crop diseases and pests based on RoBERTa-wwm with adversarial training[J]. Agronomy, 2023, 13(3): ID 941.
|
23 |
YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE computational intelligence magazine, 2018, 13(3): 55-75.
|
24 |
KHURANA D, KOLI A, KHATTER K, et al. Natural language processing: State of the art, current trends and challenges[J]. Multimedia tools and applications, 2023, 82(3): 3713-3744.
|
25 |
张宏鸣, 齐梓均, 赵春江, 等. 一种考虑双维信息的中文猕猴桃文本命名实体识别方法: CN202410434428.0[P]. 2024-07-12.
|
26 |
HUANG Z L, WANG X G, HUANG L C, et al. CCNet: Criss-cross attention for semantic segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 603-612.
|
27 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13708-13717.
|
28 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 7132-7141.
|
29 |
HUANG Z, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. arXiv:1508.01991, 2015.
|
30 |
DONG C H, ZHANG J J, ZONG C Q, et al. Character-based LSTM-CRF with radical-level features for Chinese named entity recognition[C]// Natural Language Understanding and Intelligent Applications. Cham, Germany: Springer International Publishing, 2016: 239-250.
|
31 |
AKBIK A, BLYTHE D, VOLLGRAF R. Contextual string embeddings for sequence labeling[C]// Proceedings of the 27th International Conference on Computational Linguistics. San Diego, USA: ACL, 2018: 1638-1649.
|
32 |
MURPHY K, SCHÖLKOPF B, SRIVASTAVA N, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1): 1929-1958.
|
33 |
GRIDACH M. Character-level neural network for biomedical named entity recognition[J]. Journal of biomedical informatics, 2017, 70: 85-91.
|
34 |
LI S Y, QI R Z, ZHANG S N. Chinese named entity recognition based on boundary enhancement with multi-class information[J]. Applied sciences, 2023, 13(23): ID 12925.
|
35 |
GUI T, MA R T, ZHANG Q, et al. CNN-based Chinese NER with lexicon rethinking[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China: International Joint Conferences on Artificial Intelligence, 2019: 4982-4988.
|
36 |
MA R, PENG M, ZHANG Q, et al. Simplify the usage of lexicon in Chinese NER[EB/OL]. arXiv: 1908.05969, 2019.
|