1 |
李会宾, 史云. 果园采摘机器人研究综述[J]. 中国农业信息, 2019, 31(6): 1-9.
|
|
LI H B, SHI Y. Review on orchard harvesting robots[J]. China agricultural informatics, 2019, 31(6): 1-9.
|
2 |
张鹏, 张丽娜, 刘铎, 等. 农业机器人技术研究现状[J]. 农业工程, 2019, 9(10): 1-12.
|
|
ZHANG P, ZHANG L N, LIU D, et al. Research status of agricultural robot technology[J]. Agricultural engineering, 2019, 9(10): 1-12.
|
3 |
CHEN M Y, TANG Y C, ZOU X J, et al. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM[J]. Computers and electronics in agriculture, 2021, 187: ID 106237.
|
4 |
JIN Y C, YU C C, YIN J J, et al. Detection method for table grape ears and stems based on a far-close-range combined vision system and hand-eye-coordinated picking test[J]. Computers and electronics in Agriculture, 2022, 202: ID 107364.
|
5 |
CHEN M Y, TANG Y C, ZOU X J, et al. Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology[J]. Computers and electronics in agriculture, 2020, 174: ID 105508.
|
6 |
JADHAV T, SINGH K, ABHYANKAR A. Volumetric estimation using 3D reconstruction method for grading of fruits[J]. Multimedia tools and applications, 2019, 78(2): 1613-1634.
|
7 |
WU J W, XUE X Y, ZHANG S C, et al. Plant 3D reconstruction based on LiDAR and multi-view sequence images[J]. International journal of precision agricultural aviation, 2018, 1(1): 37-43.
|
8 |
李盛辉, 夏春华, 姬长英, 等. 自主导航农业车辆的全景视觉同时定位与地图创建[J]. 江苏农业学报, 2017, 33(3): 598-609.
|
|
LI S H, XIA C H, JI C Y, et al. Simutaneous localization and mapping for autonomously-navigating agri-cultural vehicle based on panoramic vision[J]. Jiangsu journal of agricultural sciences, 2017, 33(3): 598-609.
|
9 |
URVINA R P, GUEVARA C L, VÁSCONEZ J P, et al. An integrated route and path planning strategy for skid–steer mobile robots in assisted harvesting tasks with terrain traversability constraints[J]. Agriculture, 2024, 14(8): ID 1206.
|
10 |
XIONG J T, HE Z L, LIN R, et al. Visual positioning technology of picking robots for dynamic litchi clusters with disturbance[J]. Computers and electronics in agriculture, 2018, 151: 226-237.
|
11 |
ZOU X G, YE M, LUO C Y, et al. Fault-tolerant design of a limited universal fruit-picking end-effector based on vision-positioning error[J]. Applied engineering in agriculture, 2016, 32(1): 5-18.
|
12 |
LIN G, TANG Y, ZOU X, et al. Guava detection and pose estimation using a low-cost RGB-D sensor in the field[J]. Sensors (basel), 2019, 19(2): ID E428.
|
13 |
WANG Z, WALSH K B, VERMA B. On-tree mango fruit size estimation using RGB-D images[J]. Sensors (basel, Switzerland), 2017, 17(12): ID E2738.
|
14 |
CHEN M Y, TANG Y C, ZOU X J, et al. High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm[J]. Optics and lasers in engineering, 2019, 122: 170-183.
|
15 |
ZHUANG J J, HOU C J, TANG Y, et al. Computer vision-based localisation of picking points for automatic litchi harvesting applications towards natural scenarios[J]. Biosystems engineering, 2019, 187: 1-20.
|
16 |
WANG C L, TANG Y C, ZOU X J, et al. A robust fruit image segmentation algorithm against varying illumination for vision system of fruit harvesting robot[J]. Optik, 2017, 131: 626-631.
|
17 |
SUN S S, JIANG M, HE D J, et al. Recognition of green apples in an orchard environment by combining the GrabCut model and Ncut algorithm[J]. Biosystems engineering, 2019, 187: 201-213.
|
18 |
WANG L L, ZHAO B, FAN J W, et al. Development of a tomato harvesting robot used in greenhouse[J]. International journal of agricultural and biological engineering, 2017, 10(4): 140-149.
|
19 |
LI J H, TANG Y C, ZOU X J, et al. Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots[J]. IEEE access, 2020, 8: 117746-117758.
|
20 |
OLATUNJI J R, REDDING G P, ROWE C L, et al. Reconstruction of kiwifruit fruit geometry using a CGAN trained on a synthetic dataset[J]. Computers and electronics in agriculture, 2020, 177: ID 105699.
|
21 |
WANG C L, LUO T H, ZHAO L J, et al. Window zooming-based localization algorithm of fruit and vegetable for harvesting robot[J]. IEEE access, 2019, 7: 103639-103649.
|
22 |
TAO Y T, ZHOU J. Automatic apple recognition based on the fusion of color and 3D feature for robotic fruit picking[J]. Computers and electronics in agriculture, 2017, 142: 388-396.
|
23 |
LIN G C, ZHU L X, LI J H, et al. Collision-free path planning for a guava-harvesting robot based on recurrent deep reinforcement learning[J]. Computers and electronics in agriculture, 2021, 188: ID 106350.
|
24 |
YE L, DUAN J L, YANG Z, et al. Collision-free motion planning for the litchi-picking robot[J]. Computers and electronics in agriculture, 2021, 185: ID 106151.
|
25 |
CAO X M, ZOU X J, JIA C Y, et al. RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and electronics in agriculture, 2019, 156: 105-118.
|
26 |
BAC C W, VAN HENTEN E J, HEMMING J, et al. Harvesting robots for high-value crops: State-of-the-art review and challenges ahead[J]. Journal of field robotics, 2014, 31(6): 888-911.
|
27 |
ARAD B, BALENDONCK J, BARTH R, et al. Development of a sweet pepper harvesting robot[J]. Journal of field robotics, 2020, 37(6): 1027-1039.
|
28 |
FU L S, GAO F F, WU J Z, et al. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review[J]. Computers and electronics in agriculture, 2020, 177: ID 105687.
|
29 |
GONGAL A, AMATYA S, KARKEE M, et al. Sensors and systems for fruit detection and localization: A review[J]. Computers and electronics in agriculture, 2015, 116: 8-19.
|
30 |
WU G, LI B, ZHU Q B, et al. Using color and 3D geometry features to segment fruit point cloud and improve fruit recognition accuracy[J]. Computers and electronics in agriculture, 2020, 174: ID 105475.
|
31 |
GE L, YANG Z, SUN Z, et al. A method for broccoli seedling recognition in natural environment based on binocular stereo vision and Gaussian mixture model[J]. Sensors (basel, Switzerland), 2019, 19(5): ID E1132.
|
32 |
DAI N, XIE H, YANG X J, et al. Recognition of cutting region for pomelo picking robot based on machine vision[C]// 2019 ASABE Annual International Meeting. St. Joseph, Missouri, USA: American Society of Agricultural and Biological Engineers, 2019.
|
33 |
FU L S, TOLA E, AL-MALLAHI A, et al. A novel image processing algorithm to separate linearly clustered kiwifruits[J]. Biosystems engineering, 2019, 183: 184-195.
|
34 |
WANG D D, HE D J, SONG H B, et al. Combining SUN-based visual attention model and saliency contour detection algorithm for apple image segmentation[J]. Multimedia tools and applications, 2019, 78(13): 17391-17411.
|
35 |
GE Y Y, XIONG Y, FROM P J. Symmetry-based 3D shape completion for fruit localisation for harvesting robots[J]. Biosystems engineering, 2020, 197: 188-202.
|
36 |
LUO L F, TANG Y C, ZOU X J, et al. Vision-based extraction of spatial information in grape clusters for harvesting robots[J]. Biosystems engineering, 2016, 151: 90-104.
|
37 |
XIE H, DAI N, YANG X J, et al. Research on recognition methods of pomelo fruit hanging on trees base on machine vision[C]// 2019 ASABE Annual International Meeting. St. Joseph, Missouri, USA: American Society of Agricultural and Biological Engineers, 2019.
|
38 |
QIU C, TIAN G Z, ZHAO J W, et al. Grape maturity detection and visual pre-positioning based on improved YOLOv4[J]. Electronics, 2022, 11(17): ID 2677.
|
39 |
肖张娜, 罗陆锋, 陈明猷, 等. 基于改进YOLO-v4的果园环境下葡萄检测[J]. 智能化农业装备学报(中英文), 2023, 4(2): 35-43.
|
|
XIAO Z N, LUO L F, CHEN M Y, et al. Detection of grapes in orchard environment based on improved YOLOv4[J]. Journal of intelligent agricultural mechanization, 2023, 4(2): 35-43.
|
40 |
MAJEED Y, ZHANG J, ZHANG X, et al. Apple tree trunk and branch segmentation for automatic trellis training using convolutional neural network based semantic segmentation[J]. IFAC-PapersOnLine, 2018, 51(17): 75-80.
|
41 |
PENG H X, CHEN H, ZHANG X, et al. Retinanet_G2S: A multi-scale feature fusion-based network for fruit detection of punna navel oranges in complex field environments[J]. Precision agriculture, 2024, 25(2): 889-913.
|
42 |
TAO Z Q, LI K, RAO Y, et al. Strawberry maturity recognition based on improved YOLOv5[J]. Agronomy, 2024, 14(3): ID 460.
|
43 |
GUO C M, ZHU C H, LIU Y C, et al. End-to-End lightweight Transformer-Based neural network for grasp detection towards fruit robotic handling[J]. Computers and electronics in agriculture, 2024, 221: ID 109014.
|
44 |
GE Y Y, XIONG Y, TENORIO G L, et al. Fruit localization and environment perception for strawberry harvesting robots[J]. IEEE access, 2019, 7: 147642-147652.
|
45 |
ZHANG T, HUANG Z, YOU W, et al. An autonomous fruit and vegetable harvester with a low-cost gripper using a 3D sensor[J]. Sensors (basel, Switzerland), 2019, 20(1): ID E93.
|
46 |
FANG C Y, CHEN H B, LI L, et al. A novel Adaptive Zone-fusion network for precise waxberry semantic segmentation to improve automated-harvesting in a complex orchard environment[J]. Computers and electronics in agriculture, 2024, 221: ID 108937.
|
47 |
BARTH R, HEMMING J, VAN HENTEN E J. Angle estimation between plant parts for grasp optimisation in harvest robots[J]. Biosystems engineering, 2019, 183: 26-46.
|
48 |
GENÉ-MOLA J, SANZ-CORTIELLA R, ROSELL-POLO J R, et al. Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry[J]. Computers and electronics in agriculture, 2020, 169: ID 105165.
|
49 |
ALTAHERI H, ALSULAIMAN M, MUHAMMAD G. Date fruit classification for robotic harvesting in a natural environment using deep learning[J]. IEEE access, 2019, 7: 117115-117133.
|
50 |
SALIM F, SAEED F, BASURRA S, et al. DenseNet-201 and Xception pre-trained deep learning models for fruit recognition[J]. Electronics, 2023, 12(14): ID 3132.
|
51 |
TANG Y, CHEN M, WANG C, et al. Recognition and localization methods for vision-based fruit picking robots: A review[J]. Frontiers in plant science, 2020, 11: ID 510.
|
52 |
LIN G C, TANG Y C, ZOU X J, et al. In-field citrus detection and localisation based on RGB-D image analysis[J]. Biosystems engineering, 2019, 186: 34-44.
|
53 |
BARNEA E, MAIRON R, BEN-SHAHAR O. Colour-agnostic shape-based 3D fruit detection for crop harvesting robots[J]. Biosystems engineering, 2016, 146: 57-70.
|
54 |
LIN G C, TANG Y C, ZOU X J, et al. Color-, depth-, and shape-based 3D fruit detection[J]. Precision agriculture, 2020, 21(1): 1-17.
|
55 |
WANG Y W, CHEN Y F. Fruit morphological measurement based on three-dimensional reconstruction[J]. Agronomy, 2020, 10(4): ID 455.
|
56 |
NGUYEN T T, VANDEVOORDE K, WOUTERS N, et al. Detection of red and bicoloured apples on tree with an RGB-D camera[J]. Biosystems engineering, 2016, 146: 33-44.
|
57 |
MEHTA S S, BURKS T F. Vision-based control of robotic manipulator for citrus harvesting[J]. Computers and electronics in agriculture, 2014, 102: 146-158.
|
58 |
KACZMAREK A L. Stereo vision with Equal Baseline Multiple Camera Set (EBMCS) for obtaining depth maps of plants[J]. Computers and electronics in agriculture, 2017, 135: 23-37.
|
59 |
LIU H J, LEE S H, CHAHL J S. Registration of multispectral 3D points for plant inspection[J]. Precision agriculture, 2018, 19(3): 513-536.
|
60 |
NGUYEN T T, SLAUGHTER D C., TOWNSLEY B T., et al. In-field plant phenotyping using multi-view reconstruction: An investigation in eggplant[C]// International Conference on Precison Agriculture (ICPA). St. Lous, Missouri, USA: International Society of Precision Agriculture, 2016.
|
61 |
LATIF R, SADDIK A. SLAM algorithms implementation in a UAV, based on a heterogeneous system: A survey[C]// 2019 4th World Conference on Complex Systems (WCCS). Piscataway, New Jersey, USA: IEEE, 2019.
|
62 |
CHEN X, LU H M, XIAO J H, et al. Distributed monocular multi-robot SLAM[C]// 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Piscataway, New Jersey, USA: IEEE, 2018: 73-78.
|
63 |
吴皓, 迟金鑫, 田国会. 基于视觉SLAM的物体实例识别与语义地图构建[J]. 华中科技大学学报(自然科学版), 2019, 47(9): 48-54.
|
|
WU H, CHI J X, TIAN G H. Instance recognition and semantic mapping based on visual SLAM[J]. Journal of Huazhong university of science and technology (natural science edition), 2019, 47(9): 48-54.
|
64 |
KUSUMAM K, KRAJNÍK T, PEARSON S, et al. 3D-vision based detection, localization, and sizing of broccoli heads in the field[J]. Journal of field robotics, 2017, 34(8): 1505-1518.
|
65 |
NELLITHIMARU A K, KANTOR G A. ROLS: Robust object-level SLAM for grape counting[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2019.
|
66 |
MATSUZAKI S, MASUZAWA H, MIURA J, et al. 3D semantic mapping in greenhouses for agricultural mobile robots with robust object recognition using robots' trajectory[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Piscataway, New Jersey, USA: IEEE, 2018: 357-362.
|
67 |
DONG W B, ROY P, ISLER V. Semantic mapping for orchard environments by merging two-sides reconstructions of tree rows[J]. Journal of field robotics, 2020, 37(1): 97-121.
|
68 |
LIU T H, KANG H W, CHEN C. ORB-Livox: A real-time dynamic system for fruit detection and localization[J]. Computers and electronics in agriculture, 2023, 209: ID 107834.
|
69 |
ZHANG X G, ZHANG R D, WANG X K. Visual SLAM mapping based on YOLOv5 in dynamic scenes[J]. Applied sciences, 2022, 12(22): ID 11548.
|
70 |
GAO X Y, LI J H, FAN L F, et al. Review of wheeled mobile robots' navigation problems and application prospects in agriculture[J]. IEEE access, 2018, 6: 49248-49268.
|
71 |
CHEBROLU N, LOTTES P, SCHAEFER A, et al. Agricultural robot dataset for plant classification, localization and mapping on sugar beet fields[J]. The international journal of robotics research, 2017, 36(10): 1045-1052.
|
72 |
AGUIAR A S, DOS SANTOS F N, CUNHA J B, et al. Localization and mapping for robots in agriculture and forestry: A survey[J]. Robotics, 2020, 9(4): ID 97.
|
73 |
ZHAO W, WANG X, QI B Z, et al. Ground-level mapping and navigating for agriculture based on IoT and computer vision[J]. IEEE access, 2020, 8: 221975-221985.
|
74 |
CAPUA F R, SANSONI S, MOREYRA M L. Comparative analysis of visual-SLAM algorithms applied to fruit environments[C]// 2018 Argentine Conference on Automatic Control (AADECA). Piscataway, New Jersey: IEEE, 2018.
|
75 |
SHALAL N, LOW T, MCCARTHY C, et al. Orchard mapping and mobile robot localisation using on-board camera and laser scanner data fusion - Part B: Mapping and localisation[J]. Computers and electronics in agriculture, 2015, 119: 267-278.
|
76 |
UNDERWOOD J P, HUNG C, WHELAN B, et al. Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors[J]. Computers and electronics in agriculture, 2016, 130: 83-96.
|
77 |
HABIBIE N, NUGRAHA A M, ANSHORI A Z, et al. Fruit mapping mobile robot on simulated agricultural area in Gazebo simulator using simultaneous localization and mapping (SLAM)[C]// 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS). Piscataway, New Jersey, USA: IEEE, 2017.
|
78 |
CHEN S B, ZHOU B D, JIANG C H, et al. A LiDAR/visual SLAM backend with loop closure detection and graph optimization[J]. Remote sensing, 2021, 13(14): ID 2720.
|
79 |
SUN Y, WANG Q, YAN C, et al. D-VINS: Dynamic adaptive visual-inertial SLAM with IMU prior and semantic constraints in dynamic scenes[J]. Remote sensing, 2023, 15(15): ID 3881.
|
80 |
LI D D, ZHANG F B, FENG J X, et al. LD-SLAM: A robust and accurate GNSS-aided multi-map method for long-distance visual SLAM[J]. Remote sensing, 2023, 15(18): ID 4442.
|
81 |
GAN H, LEE W S, ALCHANATIS V. A prototype of an immature citrus fruit yield mapping system[C]// 2017 ASABE International Meeting. St. Joseph, Missouri, USA: American Society of Agricultural and Biological Engineers, 2017.
|
82 |
HUA T, PEI L, LI T, et al. M2C-GVIO: Motion manifold constraint aided GNSS-visual-inertial odometry for ground vehicles[J]. Satellite navigation, 2023, 4(1): ID 13.
|
83 |
ZHU J, ZHOU H, WANG Z Y, et al. Improved multi-sensor fusion positioning system based on GNSS/LiDAR/Vision/IMU with semi-tight coupling and graph optimization in GNSS challenging environments[J]. IEEE Access, 2023, 11: 95711-95723.
|
84 |
SCHUSTER M J, SCHMID K, BRAND C, et al. Distributed stereo vision-based 6D localization and mapping for multi-robot teams[J]. Journal of field robotics, 2019, 36(2): 305-332.
|
85 |
傅博, 焦艳梅, 丁夏清, 等. 一种鲁棒的多目视觉惯性即时定位与建图方法[J]. 载人航天, 2019, 25(5): 581-585.
|
|
FU B, JIAO Y M, DING X Q, et al. A robust multi-camera visual-inertial simultaneous localization and mapping method[J]. Manned spaceflight, 2019, 25(5): 581-585.
|
86 |
LEE T J, KIM C H, CHO D I D. A monocular vision sensor-based efficient SLAM method for indoor service robots[J]. IEEE transactions on industrial electronics, 2019, 66(1): 318-328.
|
87 |
SHEIKH T S, AFANASYEV I M. Stereo vision-based optimal path planning with stochastic maps for mobile robot navigation[M]// Intelligent Autonomous Systems 15. Cham: Springer International Publishing, 2018: 40-55.
|
88 |
CHENG Y, BAI J Q, XIU C B. Improved RGB-D vision SLAM algorithm for mobile robot[C]// 2017 29th Chinese Control and Decision Conference (CCDC). Piscataway, New Jersey, USA: IEEE, 2017: 5419-5423.
|
89 |
RAVANKAR A A, RAVANKAR A, EMARU T, et al. A hybrid topological mapping and navigation method for large area robot mapping[C]// 2017 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). Piscataway, New Jersey, USA: IEEE, 2017: 1104-1107.
|
90 |
SHWE L L T, WIN W. Vision-based mobile robot self-localization and mapping system for indoor environment[J]. American academic scientific research journal for engineering, technology, and sciences, 2017, 38(1): 306-324.
|
91 |
CHEN X, ZHANG H, LU H M, et al. Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue[C]// 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR). Piscataway, New Jersey, USA: IEEE, 2017: 41-47.
|
92 |
KALOGEITON V S, IOANNIDIS K, SIRAKOULIS G C, et al. Real-time active SLAM and obstacle avoidance for an autonomous robot based on stereo vision[J]. Cybernetics and systems, 2019, 50(3): 239-260.
|
93 |
SRINIVASAN RAMANAGOPAL M, NGUYEN A P V, LE NY J. A motion planning strategy for the active vision-based mapping of ground-level structures[J]. IEEE transactions on automation science and engineering, 2018, 15(1): 356-368.
|
94 |
SUJIWO A, UNIVERSITY N, ANDO T, et al. Monocular vision-based localization using ORB-SLAM with LIDAR-aided mapping in real-world robot challenge[J]. Journal of robotics and mechatronics, 2016, 28(4): 479-490.
|
95 |
USLU E, ÇAKMAK F, ALTUNTAŞ N, et al. An architecture for multi-robot localization and mapping in the Gazebo/Robot Operating System simulation environment[J]. Simulation, 2017, 93(9): 771-780.
|
96 |
YU Y J, SUN Z P, ZHAO X G, et al. Design and implementation of an automatic peach-harvesting robot system[C]// 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). Piscataway, New Jersey, USA: IEEE, 2018: 700-705.
|
97 |
CHEN X Y, WANG S A, ZHANG B Q, et al. Multi-feature fusion tree trunk detection and orchard mobile robot localization using camera/ultrasonic sensors[J]. Computers and electronics in agriculture, 2018, 147: 91-108.
|
98 |
MASUZAWA H, MIURA J, OISHI S. Development of a mobile robot for harvest support in greenhouse horticulture: Person following and mapping[C]// 2017 IEEE/SICE International Symposium on System Integration (SII). Piscataway, New Jersey, USA: IEEE, 2017: 541-546.
|
99 |
顾宝兴, 刘钦, 田光兆, 等. 基于改进YOLOv3的果树树干识别和定位[J]. 农业工程学报, 2022, 38(6): 122-129.
|
|
GU B X, LIU Q, TIAN G Z, et al. Recognizing and locating the trunk of a fruit tree using improved YOLOv3[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(6): 122-129.
|
100 |
胡广锐, 孔微雨, 齐闯, 等. 果园环境下移动采摘机器人导航路径优化[J]. 农业工程学报, 2021, 37(9): 175-184.
|
|
HU G R, KONG W Y, QI C, et al. Optimization of the navigation path for a mobile harvesting robot in orchard environment[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 175-184.
|
101 |
IVANOV M, SERGYIENKO O, TYRSA V, et al. Influence of data clouds fusion from 3D real-time vision system on robotic group dead reckoning in unknown terrain[J]. CAA journal of automatica sinica, 2020, 7(2): 368-385.
|
102 |
XU S L, RAI R. Vision-based autonomous navigation stack for tractors operating in peach orchards[J]. Computers and electronics in agriculture, 2024, 217: ID 108558.
|
103 |
ISLAM R, HABIBULLAH H, HOSSAIN T. AGRI-SLAM: A real-time stereo visual SLAM for agricultural environment[J]. Autonomous robots, 2023, 47(6): 649-668.
|
104 |
ZHANG X S, YAO M, CHENG Q, et al. A novel hand-eye calibration method of picking robot based on TOF camera[J]. Frontiers in plant science, 2022, 13: ID 1099033.
|
105 |
LEHNERT C, ENGLISH A, MCCOOL C, et al. Autonomous sweet pepper harvesting for protected cropping systems[J]. IEEE robotics and automation letters, 2017, 2(2): 872-879.
|
106 |
LEHNERT C F, MCCOOL C, PEREZ T. Lessons learnt from field trials of a robotic sweet pepper harvester[EB/OL]. arXiv: 1706.06203, 2017
|
107 |
LEHNERT C, SA I, MCCOOL C, et al. Sweet pepper pose detection and grasping for automated crop harvesting[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2016: 2428-2434.
|
108 |
RAMON SORIA P, SUKKAR F, MARTENS W, et al. Multi-view probabilistic segmentation of pome fruit with a low-cost RGB-D camera[M]// ROBOT 2017: Third Iberian Robotics Conference. Cham: Springer International Publishing, 2017: 320-331.
|
109 |
CHEN X Y, CHAUDHARY K, TANAKA Y, et al. Reasoning-based vision recognition for agricultural humanoid robot toward tomato harvesting[C]// 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2015: 6487-6494.
|
110 |
BARTH R, HEMMING J, VAN HENTEN E J. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation[J]. Biosystems engineering, 2016, 146: 71-84.
|
111 |
熊春源, 熊俊涛, 杨振刚, 等. 基于深度强化学习的柑橘采摘机械臂路径规划方法[J]. 华南农业大学学报, 2023, 44(3): 473-483.
|
|
XIONG C Y, XIONG J T, YANG Z G, et al. Path planning method for citrus picking manipulator based on deep reinforcement learning[J]. Journal of South China agricultural university, 2023, 44(3): 473-483.
|
112 |
HEMMING J, BAC C, TUIJL B V, et al. A robot for harvesting sweet-pepper in greenhouses[C]// Proceedings International Conference of Agricultural Engineering (ICFAE). Zurich, Switzerland: EurAgEng, 2014.
|
113 |
CHRISTOPH S, JULIAN P, JÖRG B, et al. A modular robot system for agricultural applications[C]// Proceedings International Conference of Agricultural Engineering (ICFAE). Zurich, Switzerland: EurAgEng, 2014.
|
114 |
LEE B S, ROSA U A. Development of a canopy volume reduction technique for easy assessment and harvesting of Valencia citrus fruits[J]. Transactions of the asabe, 2006, 49(6): 1695-1703.
|
115 |
LING P P, EHSANI R, TING K C, et al. Sensing and end-effector for a robotic tomato harvester[C]// 2004 ASAE annual meeting. St. Joseph, Missouri, USA: American Society of Agricultural and Biological Engineers, 2004.
|
116 |
HAYASHI S, GANNO K, ISHII Y, et al. Robotic harvesting system for eggplants[J]. Japan agricultural research quarterly, 2002, 36(3): 163-168.
|
117 |
HAYASHI S, SHIGEMATSU K, YAMAMOTO S, et al. Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems engineering, 2010, 105(2): 160-171.
|
118 |
KONDO N, MONTA M, ARIMA S. Strawberry harvesting robot on hydroponic system[J]. IFAC proceedings volumes, 1998, 31(5): 181-185.
|
119 |
TANIGAKI K, FUJIURA T, AKASE A, et al. Cherry-harvesting robot[J]. Computers and electronics in agriculture, 2008, 63(1): 65-72.
|
120 |
VAN HENTEN E J, SCHENK E J, VAN WILLIGENBURG L G, et al. Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot[J]. Biosystems engineering, 2010, 106(2): 112-124.
|
121 |
SILWAL A, DAVIDSON J R, KARKEE M, et al. Design, integration, and field evaluation of a robotic apple harvester[J]. Journal of field robotics, 2017, 34(6): 1140-1159.
|
122 |
SILWAL A, DAVIDSON J, KARKEE M, et al. Effort towards robotic apple harvesting in Washington State[C]// 2016 ASABE International Meeting. St. Joseph, Missouri, USA: American Society of Agricultural and Biological Engineers, 2016.
|
123 |
FU M, GUO S, CHEN A, et al. Design and experimentation of multi-fruit envelope-cutting kiwifruit picking robot[J]. Frontiers in plant science, 2024, 15: ID 1338050.
|
124 |
WANG Y S, WU H Y, ZHU Z K, et al. Continuous picking of yellow peaches with recognition and collision-free path[J]. Computers and electronics in agriculture, 2023, 214: ID 108273.
|
125 |
GAO J, ZHANG F, ZHANG J X, et al. Picking patterns evaluation for cherry tomato robotic harvesting end-effector design[J]. Biosystems engineering, 2024, 239: 1-12.
|
126 |
BU L X, CHEN C K, HU G R, et al. Design and evaluation of a robotic apple harvester using optimized picking patterns[J]. Computers and electronics in agriculture, 2022, 198: ID 107092.
|
127 |
ZHANG H W, LI X G, WANG L, et al. Construction and optimization of a collaborative harvesting system for multiple robotic arms and an end-picker in a trellised pear orchard environment[J]. Agronomy, 2023, 14(1): ID 80.
|
128 |
FEI Z H, VOUGIOUKAS S G. A robotic orchard platform increases harvest throughput by controlling worker vertical positioning and platform speed[J]. Computers and electronics in agriculture, 2024, 218: ID 108735.
|
129 |
HU G R, CHEN C, CHEN J, et al. Simplified 4-DOF manipulator for rapid robotic apple harvesting[J]. Computers and electronics in agriculture, 2022, 199: ID 107177.
|
130 |
ROSHANIANFARD A, KAMATA T, NOGUCHI N. Performance evaluation of harvesting robot for heavy-weight crops[J]. IFAC-PapersOnLine, 2018, 51(17): 332-338.
|
131 |
DE PRETER A, ANTHONIS J, DE BAERDEMAEKER J. Development of a robot for harvesting strawberries[J]. IFAC-PapersOnLine, 2018, 51(17): 14-19.
|
132 |
ZHUANG M, LI G, DING K X, et al. Research on the application of impedance control in flexible grasp of picking robot[J]. Advances in mechanical engineering, 2023, 15(4): ID 168781322311610.
|
133 |
CHEN M Y, CHEN Z X, LUO L F, et al. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard[J]. Computers and electronics in agriculture, 2024, 219: ID 108774.
|
134 |
LEE B, KAM D, MIN B, et al. A vision servo system for automated harvest of sweet pepper in Korean greenhouse environment[J]. Applied sciences, 2019, 9(12): ID 2395.
|
135 |
SUN T, ZHANG W, MIAO Z H, et al. Object localization methodology in occluded agricultural environments through deep learning and active sensing[J]. Computers and electronics in agriculture, 2023, 212: ID 108141.
|
136 |
ZEESHAN S, AIZED T, RIAZ F. In-depth evaluation of automated fruit harvesting in unstructured environment for improved robot design[J]. Machines, 2024, 12(3): ID 151.
|
137 |
WANG C L, LI C J, HAN Q Y, et al. A performance analysis of a litchi picking robot system for actively removing obstructions, using an artificial intelligence algorithm[J]. Agronomy, 2023, 13(11): ID 2795.
|
138 |
ONISHI Y, YOSHIDA T, KURITA H, et al. An automated fruit harvesting robot by using deep learning[J]. ROBOMECH journal, 2019, 6(1): ID 13.
|
139 |
ALMENDRAL K A M, BABARAN R M G, CARZON B J C, et al. Autonomous fruit harvester with machine vision[J]. Journal of telecommunication, electronic and computer engineering, 2018,10(1-6): 79-86.
|
140 |
WILLIAMS H A M, JONES M H, NEJATI M, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms[J]. Biosystems engineering, 2019, 181: 140-156.
|
141 |
LING X, ZHAO Y S, GONG L, et al. Dual-arm cooperation and implementing for robotic harvesting tomato using binocular vision[J]. Robotics and autonomous systems, 2019, 114: 134-143.
|
142 |
XIONG Y, GE Y Y, GRIMSTAD L, et al. An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation[J]. Journal of field robotics, 2020, 37(2): 202-224.
|
143 |
LI T, XIE F, ZHAO Z Q, et al. A multi-arm robot system for efficient apple harvesting: Perception, task plan and control[J]. Computers and electronics in agriculture, 2023, 211: ID 107979.
|
144 |
XIE F, SUN N, LI J H, et al. Fruit distribution acquisition with multi-vision for multi-arm harvesting robots[C]// 2023 8th International Conference on Control, Robotics and Cybernetics (CRC). Piscataway, New Jersey, USA: IEEE, 2024: 7-13.
|