Please wait a minute...
欢迎您访问《智慧农业(中英文)》官方网站! English

当期目录

    2024年 第6卷 第5期    刊出日期:2024-09-30
    上一期   
    封面信息
    本期导读 | Open Access
    2024, 6(5):  0-0. 
    摘要 ( 22 )  
    相关文章 | 计量指标
    综合研究
    设施农业机器人导航关键技术研究进展与展望 | Open Access
    何勇, 黄震宇, 杨宁远, 李禧尧, 王玉伟, 冯旭萍
    2024, 6(5):  1-19.  doi:10.12133/j.smartag.SA202404006
    摘要 ( 799 )   HTML ( 216)   PDF (2130KB) ( 706 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 随着科学技术的快速发展和劳动力成本的不断提高,机器人在设施农业领域的应用越来越广泛。设施环境复杂多样,如何让机器人实现稳定、精准、快速地导航仍然是当前需要解决的问题。 【进展】 本文基于设施农业智能机器人的自动导航关键技术展开综述。在自主定位与地图构建方面,详细介绍了信标定位、惯性定位、即时定位与建图技术,以及融合定位方法。其中,依据使用的传感器不同,即时定位与建图技术可进一步划分为视觉、激光和融合三种不同类型。在全局路径规划方面,探讨了点到点局部路径规划和全局遍历路径规划在设施农业中的应用。针对规划目标数量的不同,详细介绍了单目标路径规划和多目标路径规划。此外,在机器人的自动避障技术方面,讨论了一系列设施农业中常用的避障控制算法。 【结论/展望】 总结了当前设施农业智能机器人自动导航技术面临的挑战,包括复杂环境、遮挡严重、成本高、作业效率低、缺乏标准化平台和公开数据集等问题。未来研究应重点关注多传感器融合、先进算法优化、多机器人协同作业,以及数据标准化与共享平台的建设。这些方向将有助于提升机器人在设施农业中的导航精度、效率和适应性,为智能农业的发展提供参考和建议。

    采摘机器人全果园视觉感知及自主作业综述 | Open Access
    陈明猷, 罗陆锋, 刘威, 韦慧玲, 王金海, 卢清华, 骆少明
    2024, 6(5):  20-39.  doi:10.12133/j.smartag.SA202405022
    摘要 ( 540 )   HTML ( 114)   PDF (4030KB) ( 954 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 采摘机器人是智慧农业的重要组成部分,其感知、规划、控制相关基础方法理论目前已有系统化研究。然而,构建具备全果园“感知-移动-采摘”一体化作业能力的实用型采摘系统仍面临诸多挑战。针对该问题,本文调研并报道了本领域近期案例,将全果园自主作业的关键技术划分为局部目标感知、全局地图构建和自主作业行为规划三个子问题并进行综述。 【进展】 首先回顾了近距离、局部范围内水果目标的精细视觉感知方法,包括基于低级特征融合、高级特征学习、RGB-D信息融合,以及多视角信息融合的4种方法;介绍与分析了全局尺度下的果园地图构建与大规模场景视觉感知案例;在感知的基础上,调研分析采摘机器人自主作业行为规划方法,包括底盘移动路径规划、机械臂视点规划与避障路径规划等方面的最新研究;最后对采摘机器人自主作业系统构建案例进行报道与分析。 【结论/展望】 感知、移动、采摘模块的高效协同是实现采摘机器人从基础功能样机进一步迈向实用型机器的关键,已有的视觉感知、规划与控制算法的鲁棒性与稳定性均需增强,协同程度需进一步提高。此外,提及了采摘机器人应用的几个开放性研究问题,并描述了其未来发展趋势。

    技术方法
    利用MODIS数据和BP神经网络重构美国区域尺度大豆日光诱导叶绿素荧光 | Open Access
    姚建恩, 刘海秋, 杨曼, 冯金赢, 陈秀, 张佩佩
    2024, 6(5):  40-50.  doi:10.12133/j.smartag.SA202309006
    摘要 ( 251 )   HTML ( 43)   PDF (1648KB) ( 369 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的和意义】 原始星载日光诱导叶绿素荧光(Sunlight-induced Chlorophyll Fluorescence, SIF)数据存在足迹离散、时空分辨率低等缺陷,针对这些问题许多研究进行了SIF重构,但大多数重构后的新型SIF数据分辨率仍较低,难以应用到精细尺度农业领域,且部分高精度SIF重构数据并非基于原始卫星SIF数据重构。OCO-2 SIF原始数据空间分辨率高(1.29 km×2.25 km),植被异质性低,对区域尺度高分辨率作物SIF重构具备突出价值。 【方法】 选取美国区域尺度大豆为研究对象,利用原始OCO-2 SIF和MODIS产品进行高分辨率大豆SIF重构,通过组合多个卫星轨迹经过的大豆种植区,提高SIF样本总量,与增强植被指数(Enhanced Vegetation Index, EVI)、光合有效辐射分量(Fraction of Photosynthetically Active Radiation, FPAR)和土地表面温度(Land Surface Temperature, LST)等预测因子足迹匹配后构建多源遥感数据集,代入BP神经网络训练模型,进而生成区域尺度空间连续且具有较高时空分辨率(8 d、500 m)的重构SIF数据集(BPSIF)。 【结果和讨论】 加入EVI,FPAR和LST的SIF重构模型R2达0.84,利用总初级生产力(Gross Primary Productivity, GPP)数据对BPSIF进行质量评价,OCO-2 SIF与 GPP的Pearson相关系数为0.53,而BPSIF与GPP相关系数提升到0.8,表明本研究生成的BPSIF数据集更加可靠。 【结论】 研究成果有望为区域尺度大豆作物SIF研究提供理论依据和数据支撑。

    基于ECMWF长时间序列再分析数据的县域冬小麦适宜播种期研究 | Open Access
    刘睿萱, 张方照, 张继波, 李振海, 杨俊涛
    2024, 6(5):  51-60.  doi:10.12133/j.smartag.SA202309019
    摘要 ( 219 )   HTML ( 19)   PDF (1500KB) ( 256 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 在全球气候变暖的大背景下,准确确定冬小麦的适宜播种期对于提高小麦产量、保障国家粮食安全具有重要意义。本研究旨在对县级镇在气候变暖长时间序列影响下冬小麦适宜播种期进行分析。 【方法】 本研究以山东省齐河县为研究区域,基于1997—2022年的欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts, ECMWF)再分析数据,首先,采用温度阈值法确定稳定通过18、16、14和0 ℃终日的日期,并从不同小麦品种的适宜播种温度、不同日期播种至越冬前≥0 ℃的积温、适播期历年日平均气温等关键播期指标对冬小麦适宜播种期进行统计分析;其次,利用叶龄积温法对冬前壮苗所需合适积温的日期进行测算;最后,结合实际生产实践情况,确定气候变暖趋势下齐河县各乡镇冬小麦的适宜播种期。 【结果和讨论】 从小麦适宜播种温度、播种至小麦越冬停止生长0 ℃的积温等农业气象指标,以及考虑齐河县种植的冬小麦品种,得出齐河县冬小麦适宜播种期为10月3日—10月16日,最佳播种期为10月5日—10月13日。但具体年份的适播期还需要依据当年的具体情况灵活播种。 【结论】 研究结果证明了温度阈值法和叶龄积温法在确定冬小麦适宜播种期研究中的可行性,通过温度变化趋势可判断冷冬或暖冬,及时调整播种时间以提高小麦产量,减少温度过高或过低对冬小麦的影响。本研究不仅可以为齐河县冬小麦产量评估提供决策参考,还可以为科学安排农业生产提供重要的理论依据。

    基于机器学习优化建模的GF-5影像土壤总氮量预测填图 | Open Access
    刘丽琪, 魏广源, 周萍
    2024, 6(5):  61-73.  doi:10.12133/j.smartag.SA202405011
    摘要 ( 195 )   HTML ( 36)   PDF (3325KB) ( 197 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 大范围快速检测土壤养分并实现基于GF-5影像对土壤总氮量精准填图。 【方法】 基于实测土壤光谱和GF-5星载高光谱数据,引入偏最小二乘回归(Partial Least Squares Regression, PLSR)、反向神经网络(Back Propagation Neural Network, BPNN)和以核函数Poly为驱动支持向量机(Support Vector Machine, SVM)的机器学习算法,构建3种土壤总氮(Total Nitrogen, TN)反演模型,并以十折交叉验证方法确定各模型的最优解。采用多元散射校正(Multiple Scattering Correction, MSC)获取的波段特征值使模型表现更佳。 【结果和讨论】 MSC-Poly-SVM模型经测试集样本检验,其决定系数(R2)、均方根误差(Root Mean Squared Error, RMSE)和相对分析误差(Residual Prediction Deviation, RPD)分别是0.863、0.203和2.147。将该模型用于星载GF-5号影像数据进行土壤总氮含量的反演填图。由填图结果可见,黑龙江省富锦市建三江垦区86.1%的土地总氮量均在2.0 g/kg以上,土地氮含量以一等地块和二等地块为主,而三等地块和四等级地块仅占总面积的11.83%。研究区内土壤氮要素储备充足,总氮高背景值主要集中在中部靠近河流两岸、呈北东东向分布。本研究土壤总氮预测成图结果与前人1∶25万地球化学插值和航空高光谱影像(Compact Airborne Spectrographic Imager, CASI)和(Shortwave Infrared Airborne Spectrographic Imager, SASI)填图效果具有很好的一致性。 【结论】 研究表明星载GF-5高光谱数据在土壤全氮含量监测填图和可视化分析上具有极高的潜力,本研究提出方法可为今后大范围开展定量检测土壤养分状况以及合理施肥提供技术支撑。

    ReluformerN:轻量化高低频增强高光谱农业地物分类方法 | Open Access
    刘伊, 张彦军
    2024, 6(5):  74-87.  doi:10.12133/j.smartag.SA202406008
    摘要 ( 149 )   HTML ( 17)   PDF (3072KB) ( 238 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 为了智能监测农业地物种类分布情况,一般采用无人机搭载高光谱相机进行高光谱数据采集,之后对高光谱数据分类,实现农作物分布图自动绘制。但不同农作物外形相似,同一农作物不同生长期差别较大,所以对农业地物分类的网络模型要求较高。分类精度较高的网络模型往往复杂程度较高,无法部署在硬件系统中。针对以上问题,本研究提出一种轻量化高低频增强的ReluformerN网络(Reluformer Network)实现农业地物分类。 【方法】 首先提出自适应八倍频卷积,不仅可以对高光谱图像的空间和光谱频域特征进行提取,同时缓解了内部人工参数设置带来的影响。其次针对低频信息可以捕获全局特征的特点,提出Reluformer进行全局特征提取,Reluformer相比transformer具有线性计算复杂度,有利于网络轻量化的同时保持了提取全局特征的能力。将该网络在三个公开的有关农作物品种精细分类的高光谱数据集上进行实验,并与较为流行的五种分类网络进行对比。 【结果和讨论】 ReluformerN在整体精度(Overall Accuracy, OA)、平均精度(Average Accuracy, AA)等精度评价指标中表现较好。在模型参数量(Parameters)、模型计算量(FLOPs)模型复杂度评价指标中,ReluformerN参数量最小,计算量最低。 【结论】 本研究提出的ReluformerN网络在农作物品种分类精度和模型复杂度之间达到了较好的平衡,有望后续部署在资源有限的硬件系统中,实现地物实时分类功能。

    基于无人机图像和改进LSC-CNN模型的密集苗木检测和计数方法 | Open Access
    彭小丹, 陈锋军, 朱学岩, 才嘉伟, 顾梦梦
    2024, 6(5):  88-97.  doi:10.12133/j.smartag.SA202404011
    摘要 ( 255 )   HTML ( 36)   PDF (2507KB) ( 263 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 快速、准确地统计密集种植的苗木数量对苗木经营管理具有重要意义。为解决无人机航拍的密集种植苗木图像中苗木粘连、尺度差异大的问题,提出以点标签数据为监督信号的改进密集检测计数模型(Locate, Size and Count, LSC-CNN),同时实现苗木的检测和计数。 【方法】 改进的LSC-CNN模型通过将LSC-CNN模型特征提取网络的最后一层卷积替换为扩张卷积(Dilated Convolutions, DConv),实现在保留苗木细节特征的同时扩大感受野,帮助模型更好地理解上下文信息以区分粘连苗木。此外,在多个尺度分支前引入注意力机制(Convolutional Block Attention Module, CBAM)使模型聚焦于有助于苗木检测和计数的关键特征,以更好地适应不同尺度的苗木。为解决类别不平衡问题,提高模型的泛化能力,将损失函数替换为标签平滑交叉熵损失函数。 【结果和讨论】 经测试,改进LSC-CNN模型在456幅苗木图像的测试集上的平均绝对误差(Mean Absolute Error, MAE)、均方根误差(Root Mean Square Error, RMSE)和平均计数准确率(Mean Counting Accurate, MCA)分别为14.24株、22.22株和91.23%,三项指标均优于IntegrateNet、PSGCNet、CANet、CSRNet、CLTR和LSC-CNN模型。 【结论】 改进LSC-CNN模型能够准确实现密集种植苗木的检测和计数,适用于多种树木的检测和计数工作。

    基于轻量化Ghost-YOLOv8和智能手机的田间水稻有效分蘖检测方法 | Open Access
    崔家乐, 曾祥峰, 任政威, 孙健, 汤晨, 杨万能, 宋鹏
    2024, 6(5):  98-107.  doi:10.12133/j.smartag.SA202407012
    摘要 ( 306 )   HTML ( 60)   PDF (2128KB) ( 232 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 单株有效分蘖数是影响水稻产量的重要农艺性状之一,为解决水稻分蘖密集、相互遮挡且存在无效分蘖导致有效分蘖检测成本高、精度较低的问题。 【方法】 通过对水稻有效分蘖与无效分蘖高度的调查分析,提出一种基于水稻分蘖高度的有效分蘖计数方法,即在水稻固定高度收割后,测量茎秆数量以得到水稻有效分蘖数;通过GhostNet对YOLOv8模型进行轻量化,以减小模型规模,便于手机端部署;并基于此模型,开发手机端水稻有效分蘖检测程序。 【结果和讨论】 田间实验结果表明,在水稻植株总株高的52%~55%范围内进行收割,计数茎秆数量得到有效分蘖数,其查全率与准确率均超过99%;轻量化的Ghost-YOLOv8模型参数量减少43%;基于该模型的水稻有效分蘖App,对本研究标准下采集的100张茎秆横截面图像进行预测,准确率为99.61%,召回率为98.76%,与人工计数单株有效分蘖结果相比,决定系数为0.985 9。 【结论】 满足田间水稻有效分蘖计数需求,有助于育种专家收集大量数据,为水稻产量田间预测提供基础。

    基于改进YOLOv10的轻量级黄花菜分级检测模型 | Open Access
    靳学萌, 梁西银, 邓鹏飞
    2024, 6(5):  108-118.  doi:10.12133/j.smartag.SA202407022
    摘要 ( 265 )   HTML ( 35)   PDF (1532KB) ( 294 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 在农业生产的后期,对干制黄花菜等级进行准确分类至关重要。针对现有目标检测模型在干制黄花菜分级任务中精度不足及参数过多的问题,提出一种轻量级的YOLOv10-AD网络模型。 【方法】 该模型设计了全新的骨干网络AKVanillaNet,针对干制黄花菜的特殊形状特征进行了优化,显著提升了检测精度,同时降低了模型的参数和计算成本。此外,还将DysnakeConv模块嵌入C2f结构中,进一步增强了对干制黄花菜特征的提取能力,并通过采用Powerful-IOU(PIOU)损失函数,更好地拟合数据,提升模型性能。 【结果和讨论】 在干制黄花菜等级分类的数据集上的测试结果表明,YOLOv10-AD模型的平均准确率mAP(Mean Average Precision)达到了85.7%,其参数量、计算量和模型大小分别为2.45 M、6.2 GFLOPs和5.0 M,帧率FPS(Frames Per Second)为156。与基准模型相比,YOLOv10-AD不仅将mAP提升了5.7%,FPS提升了25.8%,同时还将参数量、计算量及模型大小分别降低9.3%、24.4%和9.1%,不仅提升了检测精度,还降低了模型的部署难度。 【结论】 提出的YOLOv10-AD网络模型能够在不同光照条件下对干制黄花菜进行精准分类,且具有较好的实时性,为干制黄花菜等级的智能分类提供了有效的技术参考。

    基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 | Open Access
    胡程喜, 谭立新, 王文胤, 宋敏
    2024, 6(5):  119-127.  doi:10.12133/j.smartag.SA202403016
    摘要 ( 240 )   HTML ( 29)   PDF (1379KB) ( 232 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。 【方法】 对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network, ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling, ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。 【结果和讨论】 改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。 【结论】 本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。

    基于改进YOLOv8的苹果叶病害轻量化检测算法 | Open Access
    罗友璐, 潘勇浩, 夏顺兴, 陶友志
    2024, 6(5):  128-138.  doi:10.12133/j.smartag.SA202406012
    摘要 ( 291 )   HTML ( 49)   PDF (1702KB) ( 240 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 苹果是中国重要的农产品,为了保障苹果的健康生长,降低其患病率,研发苹果叶病害检测技术具有重要意义。本研究旨在应对苹果生长过程中出现的病害快速检测问题,提出一种基于改进YOLOv8的苹果叶病害检测算法。 【方法】 选用YOLOv8n模型对苹果在生长期间的多种病害(褐腐病、褐纹病、黑星病和锈病)进行识别。引入SPD-Conv替代传统卷积层,降低模型参数量和运算量的同时提高检测精度。在Neck层中添加多尺度空洞注意力机制(Multi-Scale Dilated Attention, MSDA),使模型通过动态感受野自适应地聚焦于图像中的关键区域,增强病害特征提取能力。此外,参考重参数化卷积神经网络(Reparameterized Convolutional Neural Network, RepVGG)架构,优化了原有检测头,实现检测和推理过程的架构分离,加快了模型的推理速度,提升了其特征学习能力。最后,构建了一个包含上述病害的苹果叶片数据集,并在此数据集上进行试验。 【结果和讨论】 改进后的模型在运算量降低0.1 G的同时,mAP50和mAP50∶95分别达到了88.2%和37.0%,较原模型分别提高了2.7%和1.3%,模型大小仅为7.8 MB。准确率和召回率分别为83.1%和80.2%,较原模型分别提升了0.9%和1.1%。分别与YOLOv7-tiny、YOLOv9-c、RetinaNet、Faster-RCNN等多个模型进行对比试验,结果表明,提出的YOLOv8n-SMR模型表现出优异性能,有效控制了计算复杂度和参数量。优化后的网络结构在模型大小,浮点运算次数和参数量上均保持较低水平,适合在无人机系统等硬件资源受限设备上高效部署。 【结论】 改进后的模型能够实现对苹果叶病害的准确检测,该方法不仅提高了检测精度,还通过轻量化设计有效减少了模型的运算量,为后续的苹果生长和果实收集提供可靠的数据支持,并为进一步苹果叶病害研究和探索提供了有利的参考。

    MSH-YOLOv8:融合尺度重建的蘑菇小目标检测方法 | Open Access
    叶大鹏, 景均, 张之得, 李辉煌, 吴昊宇, 谢立敏
    2024, 6(5):  139-152.  doi:10.12133/j.smartag.SA202404002
    摘要 ( 370 )   HTML ( 50)   PDF (2660KB) ( 590 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 为了解决图像尺寸变化和目标尺度变换共存对小目标检测精度的影响问题,本研究提出了一种新的检测模型:Multi-Strategy Handling YOLOv8(MSH-YOLOv8)。 【方法】 该模型在YOLOv8的基础上增加一个检测头,以提高小尺度目标敏感度;引入Swin Transformer的检测结构到头部网络,以减少计算冗余;引入包含可变形卷积的C2f_Deformable Convolutionv4(C2f_DCNv4)结构和Swin Transformer编码器结构重构YOLOv8主干网络,优化并增强其特征传递和提取能力,提高小目标敏感度;采用基于规范化的注意力模块(Normalization-based Attention Module, NAM)优化网络检测速度和准确性;用Wise-Intersection over Union Loss(WIoU)代替原损失函数,以提高训练效果和收敛速度;在后处理阶段应用分辨率动态训练、多尺度测试、软非极大值抑制算法(Soft-Non-Maximum Suppression, Soft-NMS)、加权边界框融合算法(Weighted Boxes Fusion, WBF)等方法,提高尺度变化下小目标检测效果。以蘑菇为研究对象,在开放数据集Fungi上开展实验。 【结果和讨论】 MSH-YOLOv8的平均正确率(Average Precision50, AP50)和AP@50-95分别达到了98.49%和75.29%,其中小目标检测指标值APs达39.73%。相较于主流模型YOLOv8,三项指标分别提高了2.34%,4.06%和8.55%;相较于优秀模型Transformer Prediction Heads-YOLOv5(TPH-YOLOv5),三项指标分别提高了2.14%,2.76%和6.89%。 【结论】 本研究提出的MSH-YOLOv8改进方法可在图像尺寸变化与目标尺度变化条件下有效提高小目标的检测效果。

    基于改进DeepLabCut模型的奶牛滑蹄检测方法 | Open Access
    年悦, 赵凯旋, 姬江涛
    2024, 6(5):  153-163.  doi:10.12133/j.smartag.SA202406014
    摘要 ( 160 )   HTML ( 17)   PDF (1765KB) ( 168 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    【目的/意义】 为解决奶牛在行走过程中出现滑蹄姿态无法自动识别检测的问题,基于深度学习的方法对奶牛身体关键点进行定位分析,实现对奶牛滑蹄姿态的自动检测。 【方法】 选取奶牛四蹄及头部作为奶牛身体关键点,基于DeepLabCut(DLC)对奶牛四蹄及头部关键点进行定位,首先选取ResNet系列、MobileNet-V2系列、EfficientNet系列等10个网络模型替换DLC的主干网络,最终选取准确率最高的ResNet-50作为DLC的主干网络,随后选择轻量级的卷积块注意力模块(Convolutional Block Attention Module, CBAM)嵌入ResNet-50的网络结构中,完成对ResNet-50网络模型的改进。通过改进后的模型得到奶牛身体关键点坐标,绘制奶牛四蹄及头部运动曲线。利用奶牛身体关键点运动曲线进行分析,提取奶牛滑蹄姿态的特征参数Feature1、奶牛滑蹄距离的特征参数Feature2。基于决策树对提取的奶牛滑蹄姿态特征参数进行模型的训练和验证。利用提取的奶牛滑蹄特征参数对奶牛的滑蹄距离进行计算,同时人工对奶牛滑蹄距离进行标定,与预测的滑蹄距离进行比较。 【结果和讨论】 改进后的ResNet-50网络相较于ResNet-50在验证集的定位准确率提高了9.7%,相较于YOLOv8s-pose的定位精准度提高了1.06 pixels,与手动标识的身体关键点之间的均方根误差(Root Mean Square Error, RMSE)仅为2.99 pixels。采用10折交叉验证对奶牛滑蹄检测模型的效果进行评估,结果表明,该模型的平均准确率、精确度、召回率和F1分数分别为90.42%,0.943,0.949和0.941。基于特征参数Feature2计算的奶牛滑蹄距离与人工标定奶牛滑蹄距离的RMSE仅为1.363 pixels。 【结论】 融合CBAM模块改进的ResNet-50网络模型对奶牛身体关键点定位的准确率较高,基于滑蹄判断特征参数Feature1和滑蹄距离检测特征参数Feature2建立的奶牛滑蹄判断模型和奶牛滑蹄距离预测模型与人工检测的结果相比,都有较小的误差,这表明该方法有较好的准确性,可以为奶牛滑蹄自动检测工作提供技术支持。