| 1 | 习近平. 发展新质生产力是推动高质量发展的内在要求和重要着力点[J]. 求知, 2024, 6: 4-6. | 
																													
																						|  |  XI J P. Developing new productive forces is an intrinsic requirement and an important focus of promoting high-quality development[J]. Seeking knowledge, 2024, 6: 4-6. | 
																													
																						| 2 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业(中英文), 2019, 1(1): 1-7. | 
																													
																						|  |  ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7. | 
																													
																						| 3 |  JIANG Q,  LI W Y,  FAN Z D, et al. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland[J]. Journal of hydrology, 2021, 595: ID 125660. | 
																													
																						| 4 | 王彩霞, 黄安宁, 郑鹏, 等. 中国第一代全球陆面再分析(CRA40/Land)气温和降水产品在中国大陆的适用性评估[J]. 高原气象, 2022, 41(5): 1325-1334. | 
																													
																						|  |  WANG C X,  HUANG A N,  ZHENG P, et al. Applicability evaluation of China's first generation of global land surface reanalysis(CRA40/land) air temperature and precipitation products in China mainland[J]. Plateau meteorology, 2022, 41(5): 1325-1334. | 
																													
																						| 5 | 宋长青, 温孚江, 李俊清, 等. 农业大数据研究应用进展与展望[J]. 农业与技术, 2018, 38(22): 153-156. | 
																													
																						|  |  SONG C Q,  WEN F J,  LI J Q, et al. Progress and prospect of agricultural big data research and application[J]. Agriculture and technology, 2018, 38(22): 153-156. | 
																													
																						| 6 |  AHMAD BHAT S,  HUANG N F. Big data and AI revolution in precision agriculture: Survey and challenges[J]. IEEE access, 2021, 9: 110209-110222. | 
																													
																						| 7 |  CRAVERO A,  PARDO S,  GALEAS P, et al. Data type and data sources for agricultural big data and machine learning[J]. Sustainability, 2022, 14(23): ID 16131. | 
																													
																						| 8 |  DOSHI Z,  NADKARNI S,  AGRAWAL R, et al. AgroConsultant: Intelligent crop recommendation system using machine learning algorithms[C]// 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). Piscataway, New Jersey, USA: IEEE, 2018. | 
																													
																						| 9 |  DUTTA R,  LI C,  SMITH D, et al. Big data architecture for environmental analytics[M]// IFIP Advances in Information and Communication Technology. Cham: Springer International Publishing, 2015: 578-588. | 
																													
																						| 10 |  AIKEN V C F,  DÓREA J R R,  ACEDO J S, et al. Record linkage for farm-level data analytics: Comparison of deterministic, stochastic and machine learning methods[J]. Computers and electronics in agriculture, 2019, 163: ID 104857. | 
																													
																						| 11 |  VON LÜCKEN C,  ACOSTA A,  ROJAS N. Solving a many-objective crop rotation problem with evolutionary algorithms[M]// Smart Innovation, Systems and Technologies. Singapore: Springer Singapore, 2021: 59-69. | 
																													
																						| 12 |  FENZ S,  NEUBAUER T,  FRIEDEL J K, et al. AI- and data-driven crop rotation planning[J]. Computers and electronics in agriculture, 2023, 212: ID 108160. | 
																													
																						| 13 |  ZHANG D Y,  DING Y,  CHEN P F, et al. Automatic extraction of wheat lodging area based on transfer learning method and deeplabv3+ network[J]. Computers and electronics in agriculture, 2020, 179: ID 105845. | 
																													
																						| 14 |  HAJIMIRZAJAN A,  VAHDAT M,  SADEGHEIH A, et al. An integrated strategic framework for large-scale crop planning: Sustainable climate-smart crop planning and agri-food supply chain management[J]. Sustainable production and consumption, 2021, 26: 709-732. | 
																													
																						| 15 |  WU L,  TIAN J F,  LIU Y L, et al. Multi-objective crop planting structure optimisation based on game theory[J]. Water, 2022, 14(13): ID 2125. | 
																													
																						| 16 |  WANG H B,  CHANG W Q,  YAO Y, et al. Cropformer: A new generalized deep learning classification approach for multi-scenario crop classification[J]. Frontiers in plant science, 2023, 14: ID 1130659. | 
																													
																						| 17 |  SEYDI S T,  AMANI M,  GHORBANIAN A. A dual attention convolutional neural network for crop classification using time-series Sentinel-2 imagery[J]. Remote sensing, 2022, 14(3): ID 498. | 
																													
																						| 18 | 吴刚, 彭要奇, 周广奇, 等. 基于多光谱成像和卷积神经网络的玉米作物营养状况识别方法研究[J]. 智慧农业(中英文), 2020, 2(1): 111-120. | 
																													
																						|  |  WU G,  PENG Y Q,  ZHOU G Q, et al. Recognition method for corn nutrient based on multispectral image and convolutional neural network[J]. Smart agriculture, 2020, 2(1): 111-120. | 
																													
																						| 19 |  ZHANG Y,  HUI J,  QIN Q M, et al. Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data[J]. Remote sensing of environment, 2021, 267: ID 112724. | 
																													
																						| 20 |  YUE J B,  YANG G J,  LI C C, et al. Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning[J]. Computers and electronics in agriculture, 2024, 222: ID 109026. | 
																													
																						| 21 |  NEVAVUORI P,  NARRA N,  LIPPING T. Crop yield prediction with deep convolutional neural networks[J]. Computers and electronics in agriculture, 2019, 163: ID 104859. | 
																													
																						| 22 |  REN Y T,  LI Q Z,  DU X, et al. Analysis of corn yield prediction potential at various growth phases using a process-based model and deep learning[J]. Plants, 2023, 12(3): ID 446. | 
																													
																						| 23 |  ZHAO Y,  HAN S Y,  MENG Y, et al. Transfer-learning-based approach for yield prediction of winter wheat from planet data and SAFY model[J]. Remote sensing, 2022, 14(21): ID 5474. | 
																													
																						| 24 |  ZHAO Y,  HAN S Y,  ZHENG J, et al. China wheat yield 30 m: A 30 m annual winter wheat yield dataset from 2016 to 2021 in China[J]. Earth system science data, 2023, 15(9): 4047-4063. | 
																													
																						| 25 |  SHAHI T B,  XU C Y,  NEUPANE A, et al. Recent advances in crop disease detection using UAV and deep learning techniques[J]. Remote sensing, 2023, 15(9): ID 2450. | 
																													
																						| 26 |  AKBAR M,  ULLAH M,  SHAH B, et al. An effective deep learning approach for the classification of Bacteriosis in peach leave[J]. Frontiers in plant science, 2022, 13: ID 1064854. | 
																													
																						| 27 |  LAMBA S,  KUKREJA V,  BALIYAN A, et al. A novel hybrid severity prediction model for blast paddy disease using machine learning[J]. Sustainability, 2023, 15(2): ID 1502. | 
																													
																						| 28 |  AJILOGBA C F,  WALKER S. Using crop modeling to find solutions for wheat diseases: A review[J]. Frontiers in environmental science, 2023, 10: ID 987765. | 
																													
																						| 29 |  ARGENTO F,  ANKEN T, ABT F, et al. Site-specific nitrogen management in winter wheat supported by low-altitude remote sensing and soil data[J]. Precision agriculture, 2021, 22(2): 364-386. | 
																													
																						| 30 |  HEIß A,  PARAFOROS D S,  SHARIPOV G M, et al. Modeling and simulation of a multi-parametric fuzzy expert system for variable rate nitrogen application[J]. Computers and electronics in agriculture, 2021, 182: ID 106008. | 
																													
																						| 31 |  GOBBO S,  DE ANTONI MIGLIORATI M,  FERRISE R, et al. Evaluation of different crop model-based approaches for variable rate nitrogen fertilization in winter wheat[J]. Precision agriculture, 2022, 23(6): 1922-1948. | 
																													
																						| 32 |  FONTANET M,  FERNÀNDEZ-GARCIA D,  RODRIGO G, et al. Combined simulation and optimization framework for irrigation scheduling in agriculture fields[J]. Irrigation science, 2022, 40(1): 115-130. | 
																													
																						| 33 |  CORBARI C,  SALERNO R,  CEPPI A, et al. Smart irrigation forecast using satellite LANDSAT data and meteo-hydrological modeling[J]. Agricultural water management, 2019, 212: 283-294. | 
																													
																						| 34 |  STOREY G,  MENG Q G,  LI B H. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture[J]. Sustainability, 2022, 14(3): ID 1458. | 
																													
																						| 35 |  AMARASINGAM N,  HAMILTON M,  KELLY J E, et al. Autonomous detection of mouse-ear hawkweed using drones, multispectral imagery and supervised machine learning[J]. Remote sensing, 2023, 15(6): ID 1633. | 
																													
																						| 36 |  VASILEIOU M,  KYRGIAKOS L S,  KLEISIARI C, et al. Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning[J]. Crop protection, 2024, 176: ID 106522. | 
																													
																						| 37 |  NØRREMARK M,  NILSSON R S,  SØRENSEN C A G. In-field route planning optimisation and performance indicators of grain harvest operations[J]. Agronomy, 2022, 12(5): ID 1151. | 
																													
																						| 38 |  JING Y P,  LUO C M,  LIU G. Multiobjective path optimization for autonomous land levelling operations based on an improved MOEA/D-ACO[J]. Computers and electronics in agriculture, 2022, 197: ID 106995. | 
																													
																						| 39 |  UTAMIMA A,  REINERS T. Navigating route planning for multiple vehicles in multifield agriculture with a fast hybrid algorithm[J]. Computers and electronics in agriculture, 2023, 212: ID 108021. | 
																													
																						| 40 | 李子康, 张璠, 滕桂法, 等. 基于深度强化学习的收割机省内协同调度优化策略[J]. 农业工程学报, 2024, 40(14): 23-32. | 
																													
																						|  |  LI Z K,  ZHANG F,  TENG G F, et al. Deep reinforcement learning-based optimization strategy for the cooperative scheduling of harvesters[J]. Transactions of the Chinese society of agricultural engineering, 2024, 40(14): 23-32. | 
																													
																						| 41 |  KIRAN KUMARA T M,  KANDPAL A, PAL S. A meta-analysis of economic and environmental benefits of conservation agriculture in South Asia[J]. Journal of environmental management, 2020, 269: ID 110773. | 
																													
																						| 42 |  SINGH S N,  BISARIA J,  SINHA B, et al. Developing a composite weighted indicator-based index for monitoring and evaluating climate-smart agriculture in India[J]. Mitigation and adaptation strategies for global change, 2024, 29(2): ID 12. | 
																													
																						| 43 |  Global Partners IPC. Integrated food security phase classification technical manual version 2.0[M]. Evidence and Standards for Better Food Security Decisions. Rome: FAO, 2012. | 
																													
																						| 44 |  KRISHNAMURTHY R P K,  FISHER J B,  SCHIMEL D S, et al. Applying tipping point theory to remote sensing science to improve early warning drought signals for food security[J]. Earth's future, 2020, 8(3): ID e2019EF001456. | 
																													
																						| 45 |  PYLIANIDIS C,  OSINGA S,  ATHANASIADIS I N. Introducing digital twins to agriculture[J]. Computers and electronics in agriculture, 2021, 184: ID 105942. | 
																													
																						| 46 |  PELADARINOS N,  PIROMALIS D,  CHEIMARAS V, et al. Enhancing smart agriculture by implementing digital twins: A comprehensive review[J]. Sensors, 2023, 23(16): ID 7128. | 
																													
																						| 47 | 刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场: 现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 293-304. | 
																													
																						|  |  LIU Y F,  HE Y,  LIU F, et al. Application and market of agricultural sensor technology in China: Current status and future perspectives[J]. Journal of Zhejiang university (agriculture and life sciences), 2023, 49(3): 293-304. |