1 |
FAO F. The future of food and agriculture: alternative pathways to 2050[R]. Food and Agriculture Organization of the United Nations Rome, 2018: 228.
|
2 |
FOLEY J A, DEFRIES R, ASNER G P, et al. Global consequences of land use[J]. Science, 2005, 309(5734): 570-574.
|
3 |
SHUKLA B K, MAURYA N, SHARMA M. Advancements in sensor-based technologies for precision agriculture: An exploration of interoperability, analytics and deployment strategies[J]. Engineering proceedings, 2023, 58(1): ID 22.
|
4 |
SOUSSI A, ZERO E, SACILE R, et al. Smart sensors and smart data for precision agriculture: A review[J]. Sensors, 2024, 24(8): ID 2647.
|
5 |
ALAHMAD T, NEMÉNYI M, NYÉKI A. Applying IoT sensors and big data to improve precision crop production: A review[J]. Agronomy, 2023, 13(10): ID 2603.
|
6 |
TALAAT F M. Crop yield prediction algorithm (CYPA) in precision agriculture based on IoT techniques and climate changes[J]. Neural computing and applications, 2023, 35(23): 17281-17292.
|
7 |
FURUYA D E G, BOLFE É L, PARREIRAS T C, et al. Combination of remote sensing and artificial intelligence in fruit growing: Progress, challenges, and potential applications[J]. Remote sensing, 2024, 16(24): ID 4805.
|
8 |
AJAJ R, BUHEJI M, HASSOUN A. Optimizing the readiness for industry 4.0 in fulfilling the sustainable development goal 1: Focus on poverty elimination in Africa[J]. Frontiers in sustainable food systems, 2024, 8: ID 1393935.
|
9 |
ALI G M, MIJWIL M M, BURUGA B A, et al. A survey on artificial intelligence in cybersecurity for smart agriculture: State-of-the-art, cyber threats, artificial intelligence applications, and ethical concerns[J]. Mesopotamian journal of computer science, 2024, 2024: 71-121.
|
10 |
SHAMS M Y, GAMEL S A, TALAAT F M. Enhancing crop recommendation systems with explainable artificial intelligence: A study on agricultural decision-making[J]. Neural computing and applications, 2024, 36(11): 5695-5714.
|
11 |
NICKHIL C, SINGH R, DEKA S C, et al. Exploring finger millet storage: An in-depth review of challenges, innovations, and sustainable practices[J]. Cereal research communications, 2024.
|
12 |
ASSIMAKOPOULOS F, VASSILAKIS C, MARGARIS D, et al. The implementation of "smart" technologies in the agricultural sector: A review[J]. Information, 2024, 15(8): ID 466.
|
13 |
FUENTES-PEÑAILILLO F, GUTTER K, VEGA R, et al. Transformative technologies in digital agriculture: Leveraging Internet of Things, remote sensing, and artificial intelligence for smart crop management[J]. Journal of sensor and actuator networks, 2024, 13(4): ID 39.
|
14 |
IZUCHUKWU O O. Analysis of the contribution of agricultural sector on the Nigerian economic development[J]. World review of business research, 2011, 1(1): 191-200.
|
15 |
LIN H, CHEN Z Q, QIANG Z P, et al. Automated counting of tobacco plants using multispectral UAV data[J]. Agronomy, 2023, 13(12): ID 2861.
|
16 |
KARNER K, SCHMID E, SCHNEIDER U A, et al. Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria[J]. Ecological economics, 2021, 185: ID 107044.
|
17 |
ATTRI I, AWASTHI L K, SHARMA T P. Machine learning in agriculture: A review of crop management applications[J]. Multimedia tools and applications, 2024, 83(5): 12875-12915.
|
18 |
VAKULA RANI J, AISHWARYA J, HAMSINI K. Crop management using machine learning[M]// Computational Intelligence in Pattern Recognition. Singapore: Springer Singapore, 2021: 575-584.
|
19 |
ROUMELIOTIS K I, TSELIKAS N D. ChatGPT and open-AI models: A preliminary review[J]. Future Internet, 2023, 15(6): ID 192.
|
20 |
CESAR L B, MANSO-CALLEJO M Á, CIRA C I. BERT (bidirectional encoder representations from transformers) for missing data imputation in solar irradiance time series[J]. Engineering proceedings, 2023, 39(1): ID 26.
|
21 |
任荣荣, 胡崇宇, 吴国龙. 农业种植智能体(Agri-agent)的构建与应用展望[J]. 农业展望, 2024, 20 (6): 92-106.
|
|
REN R R, HU C Y, WU G L. Construction and application outlook of agri-agent[J]. Agricultural outlook, 2024, 20(6): 92-106.
|
22 |
SAHOO S, SINGHA C, GOVIND A. Advanced prediction of rice yield gaps under climate uncertainty using machine learning techniques in Eastern India[J]. Journal of agriculture and food research, 2024, 18: ID 101424.
|
23 |
HAYES C F, RĂDULESCU R, BARGIACCHI E, et al. A practical guide to multi-objective reinforcement learning and planning[J]. Autonomous agents and multi-agent systems, 2022, 36(1): ID 26.
|
24 |
WANG T, LIU Y, WANG Y, et al. A multi-objective and equilibrium scheduling model based on water resources macro allocation scheme[J]. Water resources management, 2019, 33(10): 3355-3375.
|
25 |
SLIMANI H, MHAMDI JEL, JILBAB A, et al. Exploiting Internet of Things and AI-enabled for real-time decision support in precision farming practices[M]// Computational Intelligence in Internet of Agricultural Things. Cham: Springer Nature Switzerland, 2024: 247-274.
|