1 |
QUINET M, ANGOSTO T, YUSTE-LISBONA F J, et al. Tomato fruit development and metabolism[J]. Frontiers in plant science, 2019, 10: ID 1554.
|
2 |
PASLEY H, BROWN H, HOLZWORTH D, et al. How to build a crop model. A review[J]. Agronomy for sustainable development, 2022, 43(1): ID 2.
|
3 |
JONES J W, DAYAN E, ALLEN L H, et al. A dynamic tomato growth and yield model (tomgro)[J]. Transactions of the ASAE, 1991, 34(2): 663-672.
|
4 |
AMTHOR J S. After photosynthesis, what then: Importance of respiration to crop growth and yield[J]. Field crops research, 2025, 321: ID 109638.
|
5 |
HAN KUNLIN, WANG ZHAOYING, YANG HUIMIN, et al. Prediction model of tomato fruit diameter in greenhouse based on PCA-BPNN[J]. Xinjiang agricultural sciences, 2022, 59(2): 485-492.
|
6 |
ZHANG M, LI T, JI Y H, et al. Optimization of CO2 enrichment strategy based on BPNN for tomato plants in greenhouse[J]. Transactions of the Chinese society for agricultural machinery, 2015, 46(8): 239-245.
|
7 |
CHEN B, OUYANG Z. Prediction of winter wheat evapotranspiration based on BP neural networks[J]. Transactions of the Chinese society of agricultural engineering, 2010, 26(4): 81-86.
|
8 |
HAN L, LI R, ZHU H L. Comprehensive evaluation model of soil nutrient based on BP neural network[J]. Transactions of the Chinese society for agricultural machinery, 2011, 42(7): 109-115.
|
9 |
TIAN X Q, ZHU X J. Loop control stategies of CO2 concentration based on BPNN for Pleurotus eryngii in a factory farm[J]. Edible fungi of China, 2016, 35(2): 46-49, 53.
|
10 |
CHEN D J, SHI R L, PAPE J M, et al. Predicting plant biomass accumulation from image-derived parameters[J]. GigaScience, 2018, 7(2): ID giy001.
|
11 |
YANG H, HUANG C, LIU X R, et al. Convolutional neural networksed feature extraction for non-destructive lettuce growth monitoring[J]. Computer technology and development, 2023, 33(8): 137-143.
|
12 |
CHANDEL N S, CHAKRABORTY S K, RAJWADE Y A, et al. Identifying crop water stress using deep learning models[J]. Neural computing and applications, 2021, 33(10): 5353-5367.
|
13 |
YALCIN H. An approximation for A relative crop yield estimate from field images using deep learning[C]// 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). Piscataway, New Jersey, USA: IEEE, 2019.
|
14 |
BALI N S, SINGLA A. Deep learning based wheat crop yield prediction model in punjab region of north India[J]. Applied artificial intelligence, 2021, 35(15): 1304-1328.
|
15 |
NIGAM A, GARG S, AGRAWAL A, et al. Crop yield prediction using machine learning algorithms[C]// 2019 Fifth International Conference on Image Information Processing (ICIIP). Piscataway, New Jersey, USA: IEEE, 2019.
|
16 |
ELAVARASAN D, DURAIRAJ VINCENT P M. Crop yield prediction using deep reinforcement learning model for sustainable agrarian applications[J]. IEEE access, 2020, 8: 86886-86901.
|
17 |
DE ALWIS S, ZHANG Y S, NA M, et al. Duo attention with deep learning on tomato yield prediction and factor interpretation[M]// PRICAI 2019: Trends in Artificial Intelligence. Cham: Springer International Publishing, 2019: 704-715.
|
18 |
ZHOU X H, LIU Q Z, KATZIN D, et al. Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning[J]. Computers and electronics in agriculture, 2023, 211: ID 107980.
|
19 |
OIKONOMIDIS A, CATAL C, KASSAHUN A. Deep learning for crop yield prediction: A systematic literature review[J]. New Zealand journal of crop and horticultural science, 2023, 51(1): 1-26.
|
20 |
WANG P X, TIAN H R, ZHANG Y, et al. Crop growth monitoring and yield estimation based on deep learning: State of the art and beyond[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(2): 1-14.
|
21 |
GONG L Y, YU M, JIANG S Y, et al. Deep learning based prediction on greenhouse crop yield combined TCN and RNN[J]. Sensors, 2021, 21(13): ID 4537.
|
22 |
XING H M, XU X G, LI Z H, et al. Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test[J]. Journal of integrative agriculture, 2017, 16(11): 2444-2458.
|
23 |
MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Soybean yield prediction from UAV using multimodal data fusion and deep learning[J]. Remote sensing of environment, 2020, 237: ID 111599.
|
24 |
YANG Y, WEI X B, WANG J, et al. Prediction of seedling oilseed rape crop phenotype by drone-derived multimodal data[J]. Remote sensing, 2023, 15(16): ID 3951.
|
25 |
LIN Z X, FU R M, REN G Q, et al. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning[J]. Frontiers in plant science, 2022, 13: ID 980581.
|
26 |
TAN K. Large language models for crop yield prediction[EB/OL]. [2025-10-11].
|
27 |
ANAMI B S, MALVADE N N, PALAIAH S. Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images[J]. Artificial intelligence in agriculture, 2020, 4: 12-20.
|
28 |
JIANG H H, ZHANG C Y, QIAO Y L, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming[J]. Computers and electronics in agriculture, 2020, 174: ID 105450.
|
29 |
SHARMA R, DAS S, GOURISARIA M K, et al. A model for prediction of paddy crop disease using CNN[M]// Progress in Computing, Analytics and Networking. Singapore: Springer Singapore, 2020: 533-543.
|
30 |
TANG Q, LIANG J, ZHU F Q. A comparative review on multi-modal sensors fusion based on deep learning[J]. Signal processing, 2023, 213: ID 109165.
|
31 |
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270.
|