欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture ›› 2025, Vol. 7 ›› Issue (1): 97-110.doi: 10.12133/j.smartag.SA202410032

• 专题--农业知识智能服务和智慧无人农场(下) • 上一篇    下一篇

基于多模态数据表型特征提取的番茄生长高度预测方法

宫宇1,2, 王玲1,2, 赵荣强1,2,4(), 尤海波3, 周沫3, 刘劼1,2,4   

  1. 1. 哈尔滨工业大学 计算机科学与技术学院,黑龙江 哈尔滨 150006,中国
    2. 智能农业技术与系统国家重点实验室,黑龙江 哈尔滨 150080,中国
    3. 黑龙江省农业科学院园艺分院,黑龙江 哈尔滨 150040,中国
    4. 哈尔滨工业大学人工智能研究院有限公司,黑龙江 哈尔滨 150000,中国
  • 收稿日期:2024-10-20 出版日期:2025-01-30
  • 基金项目:
    中央高校基本科研业务费专项资金(2023FRFK06013); 黑龙江省重点研发计划项目(2023ZX01A24); 哈尔滨工业大学横向项目(MH20240081)
  • 作者简介:

    宫 宇,硕士研究生,研究方向为深度学习。E-mail:

  • 通信作者:
    赵荣强,博士,副教授,研究方向为智能感知技术、图像及光谱图像处理、压缩感知、智慧农业、具身智能等。E-mail:

Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data

GONG Yu1,2, WANG Ling1,2, ZHAO Rongqiang1,2,4(), YOU Haibo3, ZHOU Mo3, LIU Jie1,2,4   

  1. 1. Department of Computer Science and Technology, Harbin Institute of Technology, Harbin 150006, China
    2. National Key Laboratory of Smart Farming Technology and Systems, Harbin 150080, China
    3. Horticultural Branch, Heilongjiang Academy of Agricultural Sciences, Harbin 150040, China
    4. Harbin Institute of Technology Research Institute for Artificial Intelligence Inc. , Harbin 150000, China
  • Received:2024-10-20 Online:2025-01-30
  • Foundation items:The Fundamental Research Funds for the Central Universities in China(2023FRFK06013); The Key Research and Development Program of Heilongjiang Province(2023ZX01A24); Harbin Institute of Technology Horizontal Project(MH20240081)
  • About author:

    GONG Yu, E-mail:

  • Corresponding author:
    ZHAO Rongqiang, E-mail:

摘要:

【目的/意义】 准确预测番茄的生长高度对优化智能农业中的生产环境至关重要。然而,目前的预测方法大多依赖于经验模型、机制模型或基于学习的模型,这些模型主要利用图像数据或环境数据,未能充分利用多模态数据,无法全面捕捉植物生长的各个方面。 【方法】 为了解决这一限制,本研究提出了一种基于深度学习算法的两阶段表型特征提取(Phenotypic Feature Extraction, PFE)模型,该模型结合了番茄植物的环境信息和植物本身的信息,提供了对生长过程的全面理解。PFE模型采用表型特征和时间特征提取器,综合捕捉两类特征,从而深入理解番茄植物与环境之间的相互作用,最终实现对生长高度的高精度预测。 【结果和讨论】 实验结果表明,该模型具有显著效果:在基于过去五天数据预测接下来的两天时,PFE-RNN(Phenotypic Feature Extraction with Recurrent Neural Network)模型和PFE-LSTM(Phenotypic Feature Extraction with Long Short-Term Memory)模型的平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)分别为0.81%和0.40%,显著低于大语言模型(Large language model, LLM)模型的8.00%和基于Transformer的模型的6.72%。在较长期预测中,PFE-RNN模型在10天预测4天后和30天预测12天后的表现持续优于其他两个基准模型,MAPE分别为2.66%和14.05%。 【结论】 所提出的基于表型-时间协同的预测方法展示了其在智能化、数据驱动的番茄种植管理中的巨大潜力,是提升智能番茄种植管理效率和精准度的一种有前景的方法。

关键词: 番茄生长预测, 深度学习, 表型特征提取, 多模态数据, 递归神经网络, 长短期记忆网络, 大语言模型

Abstract:

[Objective] Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming. However, current prediction methods predominantly rely on empirical, mechanistic, or learning-based models that utilize either images data or environmental data. These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively. [Methods] To address this limitation, a two-stage phenotypic feature extraction (PFE) model based on deep learning algorithm of recurrent neural network (RNN) and long short-term memory (LSTM) was developed. The model integrated environment and plant information to provide a holistic understanding of the growth process, emploied phenotypic and temporal feature extractors to comprehensively capture both types of features, enabled a deeper understanding of the interaction between tomato plants and their environment, ultimately leading to highly accurate predictions of growth height. [Results and Discussions] The experimental results showed the model's effectiveness: When predicting the next two days based on the past five days, the PFE-based RNN and LSTM models achieved mean absolute percentage error (MAPE) of 0.81% and 0.40%, respectively, which were significantly lower than the 8.00% MAPE of the large language model (LLM) and 6.72% MAPE of the Transformer-based model. In longer-term predictions, the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead, the PFE-RNN model continued to outperform the other two baseline models, with MAPE of 2.66% and 14.05%, respectively. [Conclusions] The proposed method, which leverages phenotypic-temporal collaboration, shows great potential for intelligent, data-driven management of tomato cultivation, making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.

Key words: tomato growth prediction, deep learning, phenotypic feature extraction, multi-modal data, recurrent neural network, long short-term memory, large language model

中图分类号: