欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture

• •    

RIME2-VMD-LSTM: 基于改进VMD-LSTM的作物冠层温度动态预测模型

王毓玺1, 黄铝文1,2(), 段小琳1   

  1. 1. 西北农林科技大学 信息工程学院,陕西杨凌 712100,中国
    2. 农业农村部农业物联网重点实验室,陕西杨凌 712100,中国
  • 收稿日期:2025-02-20 出版日期:2025-05-22
  • 基金项目:
    国家重点研发计划 项目(2020YFD1100601)
  • 作者简介:

    王毓玺,硕士,研究方向为生物图像处理。E-mail:

  • 通信作者:
    黄铝文,博士,副教授,研究方向为生物图像处理。E-mail:

RIME2-VMD-LSTM: A Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM

WANG Yuxi1, HUANG Lyuwen1,2(), DUAN Xiaolin1   

  1. 1. College of Information and Engineering, Northwest A&F University, Yangling 712100, China
    2. Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
  • Received:2025-02-20 Online:2025-05-22
  • Foundation items:National Key R&D Program of China(2020YFD1100601)
  • About author:

    WANG Yuxi. E-mail:

  • Corresponding author:
    HUANG Lyuwen. E-mail:

摘要:

[目的/意义] 准确预测作物冠层温度,有助于综合衡量作物生长状况、指导农业生产。本研究以猕猴桃和葡萄为研究对象,解决作物冠层温度预测的准确性问题。 [方法] 构建一种基于长短期记忆(Long Short-Term Memory, LSTM)、变分模态分解(Variational Mode Decomposition,VMD)和雾凇优化算法(Rime Ice Morphology-based Optimization Algorithm​​,RIME)的作物冠层温度动态预测模型RIME-VMD-RIME-LSTM(即RIME2-VMD-LSTM)。首先,通过悬挂于滑索上的园区巡检机器人采集作物冠层温度数据。其次,通过多组预测试验的性能表现,选定VMD-LSTM作为基模型,同时为减小VMD不同频率分量之间交叉干扰,运用K-means聚类算法对各分量样本熵进行聚类,重构为新分量。最后,利用RIME优化算法对VMD和LSTM的参数进行优化,提升模型的预测精度。 [结果和讨论] 本模型在模拟不同噪声环境下的均方根误差(Root Mean Square Error, RMSE)和平均绝对误差(Mean Absolute Error, MAE)均小于对比模型,分别为0.360 1和0.254 3℃,且R2高达0.994 7。 [结论] 本研究模型为动态预测作物冠层温度提供了可行的方法,并为园区作物生长状况提供数据支持。

关键词: 冠层温度, 温度预测, LSTM, RIME, VMD

Abstract:

[Objective] Accurate prediction of crop canopy temperature is essential for comprehensively assessing crop growth status and guiding agricultural production. This study focuses on kiwifruit and grapes to address the challenges in accurately predicting crop canopy temperature. [Methods] A dynamic prediction model for crop canopy temperature was developed, based on Long Short-Term Memory (LSTM), Variational Mode Decomposition (VMD), and the Rime Ice Morphology-based Optimization Algorithm (RIME) optimization algorithm, named RIME-VMD-RIME-LSTM (RIME2-VMD-LSTM). Firstly, crop canopy temperature data were collected by an inspection robot suspended on a cableway. Secondly, through the performance of multiple pre-test experiments, VMD-LSTM was selected as the base model. To reduce cross-interference between different frequency components of VMD, the K-means clustering algorithm was applied to cluster the sample entropy of each component, reconstructing them into new components. Finally, the RIME optimization algorithm was utilized to optimize the parameters of VMD and LSTM, enhancing the model's prediction accuracy. [Results and Discussions] The experimental results demonstrated that the proposed model achieved lower Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) (0.360 1 and 0.254 3°C, respectively) in modeling different noise environments than the comparator model. Furthermore, the R2 value reached a maximum of 0.994 7. [Conclusions] Therefore, this model provides a feasible method for dynamically predicting crop canopy temperature and offers data support for assessing crop growth status in agricultural parks.

Key words: canopy temperature, temperature prediction, LSTM, RIME, VMD

中图分类号: