| [1] |
韦一金, 樊景超. 基于ChatGLM2-6B的农业政策问答系统[J]. 数据与计算发展前沿(中英文), 2024, 6(4): 116-127.
|
|
WEI Y J, FAN J C. An agricultural policy question answering system based on ChatGLM2-6B[J]. Frontiers of data & computing, 2024, 6(4): 116-127.
|
| [2] |
赵泽行, 吴晓鹏, 王怡馨, 等. 基于知识图谱的农作物病虫害问答系统研究[J]. 智能化农业装备学报(中英文), 2024(4): 39-50.
|
|
ZHAO Z X, WU X P, WANG Y X, et al. Research on question answering system for crop diseases and pests based on knowledge graph[J]. Journal of intelligent agricultural mechanization, 2024(4): 39-50.
|
| [3] |
Yong D, Haifeng L, Ya-Nan C,et al. Similar cluster frequency entropy: A novel uncertainty estimator for detecting large language models confabulations[J].Chinese journal of electronics, 2025, 34(5):1-14.
|
| [4] |
NIRANJAN P Y, RAJPUROHIT V S, SANNAKKI S S. Question answering system for agriculture domain using machine learning techniques: Literature survey and challenges[J]. International journal of computational systems engineering, 2020, 6(2): ID 91.
|
| [5] |
MALIK S, KHAREL H, DAHIYA D S, et al. Assessing ChatGPT4 with and without retrieval-augmented generation in anticoagulation management for gastrointestinal procedures[J]. Annals of gastroenterology, 2024, 37(5): 514-526.
|
| [6] |
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[EB/OL]. arXiv: 2005.11401, 2020.
|
| [7] |
Zhang Z, Wen L, Zhao W. Rule-KBQA: Rule-Guided Reasoning for Complex Knowledge Base Question Answering with Large Language Models[C]// Proceedings of the 31st International Conference on Computational Linguistics. Bangkok, Thailand: International Committee on Computational Linguistics, 2025: 8399-8399.
|
| [8] |
CHEN J K, HU X, LI Z H, et al. Code search is all you need? improving code suggestions with code search[C]// 2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE). Piscataway, New Jersey, USA: IEEE, 2024: 880-892.
|
| [9] |
HAN Y, YANG T, YUAN M, et al. Construction of a maritime knowledge graph using GraphRAG for entity and relationship extraction from maritime documents[J]. Journal of computer and communications, 2025, 13(2): 68-93.
|
| [10] |
GUTIÉRREZ B J, SHU Y H, GU Y, et al. HippoRAG: Neurobiologically inspired long-term memory for large language models[EB/OL]. arXiv: 2405.14831, 2024.
|
| [11] |
JEONG M, SOHN J, SUNG M, et al. Improving medical reasoning through retrieval and self-reflection with retrieval-augmented large language models[J]. Bioinformatics, 2024, 40(): i119-i129.
|
| [12] |
ZHANG Y F, ZHAO D, LI H Y, et al. AdamRAG: Adaptive algorithm with ravine method for training deep neural networks[J]. Neural processing letters, 2025, 57(3): ID 53.
|
| [13] |
LI Y. A dynamic knowledge base updating mechanism-based retrieval-augmented generation framework for intelligent question-and-answer systems[J]. Journal of computer and communications, 2025, 13(1): 41-58.
|
| [14] |
TU Q S, GUO J, LI N, et al. Mitigating grand challenges in life cycle inventory modeling through the applications of large language models[J]. Environmental science & technology, 2024, 58(44): 19595-19603.
|
| [15] |
TILTON Z, LAVELLE J M, FORD T, et al. Artificial intelligence and the future of evaluation education: Possibilities and prototypes[J]. New directions for evaluation, 2023, 2023(178/179): 97-109.
|
| [16] |
PERKINS G, ANDERSON N W, SPIES N C. Retrieval-augmented generation salvages poor performance from large language models in answering microbiology-specific multiple-choice questions[J]. Journal of clinical microbiology, 2025, 63(3): ID e01624-24.
|
| [17] |
SIDDHARTH L, LUO J X. Retrieval augmented generation using engineering design knowledge[J]. Knowledge-based systems, 2024, 303: ID 112410.
|
| [18] |
于平. 基于大数据的深度学习网络爬虫算法在信息搜集与处理中的应用[J]. 科技资讯, 2024, 22(16): 55-57.
|
|
YU P. Application of deep learning web crawler algorithm based on big data in information collection and processing[J]. Science & technology information, 2024, 22(16): 55-57.
|
| [19] |
YUAN W W, YANG W X, HE L, et al. Research on entity and relationship extraction with small training samples for cotton pests and diseases[J]. Agriculture, 2024, 14(3): ID 457.
|
| [20] |
张朵朵, 张雪茹, 王永杰, 等. 基于C/S架构和MySQL数据库的肉类加工信息管理系统的设计与构建[J]. 食品与生物技术学报, 2024, 43(9): 99-106.
|
|
ZHANG D D, ZHANG X R, WANG Y J, et al. Design and construction of meat processing information management system based on C/S architecture and MySQL database[J]. Journal of food science and biotechnology, 2024, 43(9): 99-106.
|
| [21] |
范晓磊, 陈钊, 高金萍. Elasticsearch在林业数据领域的应用[J]. 世界林业研究, 2025, 38(1): 60-66.
|
|
FAN X L, CHEN Z, GAO J P. Application of elasticsearch in the field of forestry data[J]. World forestry research, 2025, 38(1): 60-66.
|
| [22] |
郑少帅, 翁境鸿, 蒋小洋. 基于BM25、文本Embeddings与交叉编码器的民航客服知识库检索研究[J]. 无线互联科技, 2023, 20(24): 122-125.
|
|
ZHENG S S, WENG J H, JIANG X Y. Research on civil aviation customer service knowledge base retrieval based on BM25, text vector method and cross encoder[J]. wuxian hulian keji, 2023, 20(24): 122-125.
|
| [23] |
王苑铮, 范意兴, 陈薇, 等. 稠密向量实体检索模型的二值化提速压缩[J]. 模式识别与人工智能, 2023, 36(1): 60-69.
|
|
WANG Y Z, FAN Y X, CHEN W, et al. Binarization for speed-boosting compression of dense vector-based entity retrieval models[J]. Pattern recognition and artificial intelligence, 2023, 36(1): 60-69.
|
| [24] |
赵征宇, 罗景, 涂新辉. 基于多粒度语义融合的信息检索方法[J]. 计算机应用, 2024, 44(6): 1775-1780.
|
|
ZHAO Z Y, LUO J, TU X H. Information retrieval method based on multi-granularity semantic fusion[J]. Journal of computer applications, 2024, 44(6): 1775-1780.
|
| [25] |
MAHMOUDI E, ERICKSON B, VAHDATI S, et al. Prompt optimization and chain of thought reasoning for automated classification of echocardiography reports using privacy-preserving open-source language models[J]. Journal of the American college of cardiology, 2025, 85(12): ID 2139.
|