1 |
赵婷婷, 孙婷婷, 王俊刚, 等. 甘蔗育种研究进展[J]. 中国科学: 生命科学, 2024, 54(10): 1814-1832.
|
|
ZHAO T T, SUN T T, WANG J G, et al. The research progress on sugarcane breeding[J]. Scientia sinica (vitae), 2024, 54(10): 1814-1832.
|
2 |
张帅, 王文棣. 甘蔗高产栽培技术与病虫害防治探讨[J]. 热带农业工程, 2022, 46(5): 88-90.
|
|
ZHANG S, WANG W D. Discussion on sugarcane high-yield cultivation technology and pest control[J]. Tropical agricultural engineering, 2022, 46(5): 88-90.
|
3 |
邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46.
|
|
SHAO M Y, ZHANG J H, FENG Q, et al. Research progress of deep learning in detection and recognition of plant leaf diseases[J]. Smart agriculture, 2022, 4(1): 29-46.
|
4 |
DESHPANDE R, PATIDAR H. Tomato plant leaf disease detection using generative adversarial network and deep convolutional neural network[J]. The imaging science journal, 2022, 70(1): 1-9.
|
5 |
RAJPOOT V, TIWARI A, JALAL A S. Automatic early detection of rice leaf diseases using hybrid deep learning and machine learning methods[J]. Multimedia tools and applications, 2023, 82(23): 36091-36117.
|
6 |
LI X, RAI L. Apple leaf disease identification and classification using ResNet models[C]// 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). Piscataway, New Jersey, USA: IEEE, 2020: 738-742.
|
7 |
THENMOZHI K, SRINIVASULU REDDY U. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and electronics in agriculture, 2019, 164: ID 104906.
|
8 |
杜甜甜, 南新元, 黄家興, 等. 改进RegNet识别多种农作物病害受害程度[J]. 农业工程学报, 2022, 38(15): 150-158.
|
|
DU T T, NAN X Y, HUANG J X, et al. Identifying the damage degree of various crop diseases using an improved RegNet[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(15): 150-158.
|
9 |
刘合兵, 鲁笛, 席磊. 基于MobileNetV2和迁移学习的玉米病害识别研究[J]. 河南农业大学学报, 2022, 56(6): 1041-1051.
|
|
LIU H B, LU D, XI L. The research of maize disease identification based on MobileNetV2 and transfer learning[J]. Journal of Henan agricultural university, 2022, 56(6): 1041-1051.
|
10 |
SUBRAMANIAN M, SHANMUGAVADIVEL K, NANDHINI P S. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves[J]. Neural computing and applications, 2022, 34(16): 13951-13968.
|
11 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 1-9.
|
12 |
吕宗旺, 邱帅欣, 孙福艳, 等. 基于改进YOLOv5s的轻量化储粮害虫检测方法[J]. 中国粮油学报, 2023, 38(8): 221-228.
|
|
LYU Z W, QIU S X, SUN F Y, et al. Lightweight grain storage pest detection method based on improved YOLOv5s[J]. Journal of the Chinese cereals and oils association, 2023, 38(8): 221-228.
|
13 |
冀常鹏, 陈浩楠, 代巍. 基于GSNet的番茄叶面病害识别研究[J]. 沈阳农业大学学报, 2021, 52(6): 751-757.
|
|
JI C P, CHEN H N, DAI W. Tomato leaf disease recognition based on GSNet[J]. Journal of Shenyang agricultural university, 2021, 52(6): 751-757.
|
14 |
彭玉寒, 李书琴. 基于重参数化MobileNetV2的农作物叶片病害识别模型[J]. 农业工程学报, 2023, 39(17): 132-140.
|
|
PENG Y H, LI S Q. Recognizing crop leaf diseases using reparameterized MobileNetV2[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(17): 132-140.
|
15 |
李亚文, 何甜. 基于GA-SVM和特征提取的苹果叶部病害识别检测[J]. 食品与发酵科技, 2024, 60(3): 7-13.
|
|
LI Y W, HE T. Detection of apple leaf disease identification based on GA-SVM and feature extraction[J]. Food and fermentation science & technology, 2024, 60(3): 7-13.
|
16 |
项新建, 郑雨, 曹光客, 等. 基于改进YOLOv5s的水稻叶病检测方法[J]. 中国农机化学报, 2024, 45(3): 212-218.
|
|
XIANG X J, ZHENG Y, CAO G K, et al. Detection method of rice leaf disease based on improved YOLOv5s[J]. Journal of Chinese agricultural mechanization, 2024, 45(3): 212-218.
|
17 |
WANG X W, LIU J, LIU G X. Diseases detection of occlusion and overlapping tomato leaves based on deep learning[J]. Frontiers in plant science, 2021, 12: ID 792244.
|
18 |
LI Z B, YANG Y B, LI Y, et al. A Solanaceae disease recognition model based on SE-Inception[J]. Computers and electronics in agriculture, 2020, 178: ID 105792.
|
19 |
SALMI A, BENIERBAH S, GHAZI M. Low complexity image enhancement GAN-based algorithm for improving low-resolution image crop disease recognition and diagnosis[J]. Multimedia tools and applications, 2022, 81(6): 8519-8538.
|
20 |
SWAPNILDAPHAL, SANJAYKOLI. Sugarcane leaf disease dataset[DB/OL]. Version 1.0. Mendeley. (2022-08-20)[2025-01-25].
|
21 |
丁灿, 王文胜, 黄小龙. 基于改进HSV空间的机器视觉花生霉变检测方法[J]. 粮油食品科技, 2024, 32(4): 178-184.
|
|
DING C, WANG W S, HUANG X L. Machine vision detection method for peanut mold based on improved HSV space[J]. Science and technology of cereals, oils and foods, 2024, 32(4): 178-184.
|
22 |
SMITH A R. Color gamut transform pairs[J]. ACM siggraph computer graphics, 1978, 12(3): 12-19.
|
23 |
TAN M X, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[EB/OL]. arXiv: 1905.11946, 2019.
|
24 |
HE X, ZHAO K Y, CHU X W. AutoML: A survey of the state-of-the-art[J]. Knowledge-based systems, 2021, 212: ID 106622.
|
25 |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 1251-1258.
|
26 |
张国忠, 吕紫薇, 刘浩蓬, 等. 基于改进DenseNet和迁移学习的荷叶病虫害识别模型[J]. 农业工程学报, 2023, 39(8): 188-196.
|
|
ZHANG G Z, LYU Z W, LIU H P, et al. Model for identifying Lotus leaf pests and diseases using improved DenseNet and transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(8): 188-196.
|
27 |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
|
28 |
马睿, 王佳, 赵威, 等. 基于卷积神经网络与迁移学习的玉米籽粒图像分类识别[J]. 中国粮油学报, 2023, 38(5): 128-134.
|
|
MA R, WANG J, ZHAO W, et al. Classification and recognition of corn kernel image based on convolution neural network and transfer learning[J]. Journal of the Chinese cereals and oils association, 2023, 38(5): 128-134.
|
29 |
王亚鹏, 曹姗姗, 李全胜, 等. 融合迁移学习和集成学习的自然背景下荒漠植物识别方法[J]. 智慧农业(中英文), 2023, 5(2): 93-103.
|
|
WANG Y P, CAO S S, LI Q S, et al. Desert plant recognition method under natural background incorporating transfer learning and ensemble learning[J]. Smart agriculture, 2023, 5(2): 93-103.
|
30 |
吴家葆, 曾国辉, 张振华, 等. 基于K-means分层聚类的TCN-GRU和LSTM动态组合光伏短期功率预测[J]. 可再生能源, 2023, 41(8): 1015-1022.
|
|
WU J B, ZENG G H, ZHANG Z H, et al. Dynamic combination of TCN-GRU and LSTM photovoltaic short-term power prediction based on K-means hierarchical clustering[J]. Renewable energy resources, 2023, 41(8): 1015-1022.
|
31 |
SHAHRIARI B, SWERSKY K, WANG Z Y, et al. Taking the human out of the loop: A review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148-175.
|