1 |
LIU J Z, LI Z G, LI P P. History and present situations of robotic harvesting technology: A review[M]// Springer Tracts in Mechanical Engineering. Cham: Springer Singapore, 2021.
|
2 |
刘雨婷. 基于特征融合的小目标检测算法研究[D]. 徐州: 中国矿业大学, 2023.
|
|
LIU Y T. Research on the small object detection algorithm based on feature fusion[D].Xuzhou: China University of Mining and Technology, 2023.
|
3 |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway, New Jersey, USA: IEEE, 2021: 2778-2788.
|
4 |
PHAM M T, COURTRAI L, FRIGUET C, et al. YOLO-fine: One-stage detector of small objects under various backgrounds in remote sensing images[J]. Remote sensing, 2020, 12(15): ID 2501.
|
5 |
MATHEW M P, MAHESH T Y. Leaf-based disease detection in bell pepper plant using YOLO v5[J]. Signal, image and video processing, 2022, 16(3): 841-847.
|
6 |
GAI R L, CHEN N, YUAN H. A detection algorithm for cherry fruits based on the improved YOLO-v4 model[J]. Neural computing and applications, 2023, 35(19): 13895-13906.
|
7 |
JI S J, LING Q H, HAN F. An improved algorithm for small object detection based on YOLO v4 and multi-scale contextual information[J]. Computers and electrical engineering, 2023, 105: ID 108490.
|
8 |
LIU M, WANG X, ZHOU A, et al. UAV-YOLO: Small object detection on unmanned aerial vehicle perspective[J]. Sensors (basel), 2020, 20(8): ID E2238.
|
9 |
LI Y J, LI S S, DU H H, et al. YOLO-ACN: Focusing on small target and occluded object detection[J]. IEEE access, 2020, 8: 227288-227303.
|
10 |
ZHANG W Z, HAN Y L, HUANG C, et al. Recognition method for seed potato buds based on improved YOLOv3-tiny[J]. INMATEH agricultural engineering, 2022, 67(2): 364-373.
|
11 |
ZHANG J, MENG Y Z, YU X H, et al. MBAB-YOLO: A modified lightweight architecture for real-time small target detection[J]. IEEE access, 2023, 11: 78384-78401.
|
12 |
LI R H, SHEN Y. YOLOSR-IST: A deep learning method for small target detection in infrared remote sensing images based on super-resolution and YOLO[J]. Signal processing, 2023, 208: ID 108962.
|
13 |
LIU Q, FANG M, LI Y S, et al. Deep learning based research on quality classification of shiitake mushrooms[J]. LWT, 2022, 168: ID 113902.
|
14 |
MA H, MA H G, JI J T, et al. FES-YOLOv5s: A lightweight model for agaricus bisporus detection[J]. IEEE access, 2024, 12: 71219-71231.
|
15 |
LU C P, LIAW J J. A novel image measurement algorithm for common mushroom caps based on convolutional neural network[J]. Computers and electronics in agriculture, 2020, 171: ID 105336.
|
16 |
RETSINAS G, EFTHYMIOU N, MARAGOS P. Mushroom segmentation and 3D pose estimation from point clouds using fully convolutional geometric features and implicit pose encoding[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2023: 6263-6270.
|
17 |
张银萍, 朱双杰, 徐燕, 等. 基于机器视觉的猴头菇品质快速无损检测与分级[J]. 现代食品科技, 2023, 39(3): 239-246.
|
|
ZHANG Y P, ZHU S J, XU Y, et al. Rapid non-destructive testing and grading of hericium erinaceus based on machine vision[J]. Modern food science and technology, 2023, 39(3): 239-246.
|
18 |
YANG Y M, LIAO Y R, CHENG L F, et al. Remote sensing image aircraft target detection based on GIoU-YOLO v3[C]// 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). Piscataway, New Jersey, USA: IEEE, 2021: 474-478.
|
19 |
WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2020: 1571-1580.
|
20 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021.
|
21 |
XIONG Y W, LI Z Q, CHEN Y T, et al. Efficient deformable ConvNets: Rethinking dynamic and sparse operator for vision applications[EB/OL]. arXiv: 2401.06197, 2024.
|
22 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 936-944.
|
23 |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]// European Conference on Computer Vision. Cham, Germany: Springer, 2014: 346-361.
|
24 |
LIU Y, SHAO Z, TENG Y, ET AL. NAM: Normalization-based attention module[EB/OL]. arXiv: 2111.12419, 2021.
|
25 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
26 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 8759-8768.
|
27 |
CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]// Asian Conference on Computer Vision. Cham, Germany: Springer, 2017: 214-230.
|
28 |
HU D A, YU M, WU X Y, et al. DGW-YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function[J]. IET image processing, 2024, 18(4): 1096-1108.
|