1 | ZHANG J, WANG N, YUAN L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements[J]. Biosystems Engineering, 2017, 162: 20-29. | 2 | FENG W, SHEN W Y, HE L, et al. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices[J]. Precision Agriculture, 2016, 17(5): 608-627. | 3 | GALLEGO F J, KUSSUL N, SKAKUN S, et al. Efficiency assessment of using satellite data for crop area estimation in Ukraine[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 29: 22-30. | 4 | SETHY P K, BARPANDA N K, RATH A K, et al. Image processing techniques for diagnosing rice plant disease: A survey[J]. Procedia Computer Science, 2020, 167: 516-530. | 5 | YANG C. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example[J]. Engineering, 2020, 6(5): 528-532. | 6 | ZHENG Q, YE H, HUANG W, et al. Integrating spectral information and meteorological data to monitor wheat yellow rust at a regional scale: A case study[J]. Remote Sensing, 2021, 13(2): ID 278. | 7 | HUANG W J, LAMB D W, NIU Z, et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging[J]. Precision Agriculture, 2007, 8(4-5): 187-197. | 8 | ZHANG J C, PU R L, WANG J H, et al. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements[J]. Computers and Electronics in Agriculture, 2012, 85: 13-23. | 9 | LUO J H, ZHAO C J, HUANG W J, et al. Discriminating wheat aphid damage degree using 2-dimensional feature space derived from Landsat 5 TM[J]. Sensor Letters, 2012, 10(1-2): 608-614. | 10 | ZHENG Q, HUANG W, CUI X, et al. New spectral index for detecting wheat yellow rust using sentinel-2 multispectral imagery[J]. Sensors, 2018, 18(3): ID 868. | 11 | HE L, QI S, DUAN J, et al. Monitoring of Wheat powdery mildew disease severity using multiangle hyperspectral remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(2): 979-990. | 12 | ZHAO J, FANG Y, CHU G, et al. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier[J]. Plants, 2020, 9(8): ID 936. | 13 | KHAN I H, LIU H, LI W, et al. Early detection of powdery mildew disease and accurate quantification of its severity using hyperspectral images in wheat[J]. Remote Sensing, 2021, 13(18): ID 3612. | 14 | ZHAO J, XU C, XU J, et al. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale[J]. Australasian Plant Pathology, 2018, 47(1): 53-61. | 15 | LIANG W, CARBERRY P, WANG G, et al. Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China[J]. Field Crops Research, 2011, 124(2): 180-185. | 16 | CHEN H, ZHANG H, LI Y. Review on research of meteorological conditions and prediction methods of crop disease and insect pest[J]. Chinese Journal of Agrometeorology, 2007, 28(2): 212-216. | 17 | YUAN L, PU R L, ZHANG J C, et al. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale[J]. Precision Agriculture, 2016, 17(3): 332-348. | 18 | LOVELAND T R, IRONS J R. Landsat 8: The plans, the reality, and the legacy[J]. Remote Sensing of Environment, 2016, 185: 1-6. | 19 | WANG W, LIANG S, MEYERS T. Validating MODIS land surface temperature products using long-term nighttime ground measurements[J]. Remote Sensing of Environment, 2008, 112(3): 623-635. | 20 | HUANG L, JIANG J, HUANG W, et al. Wheat yellow rust monitoring based on Sentinel-2 Image and BPNN model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 178-185. | 21 | LIU R, ZAHNG S, JIA R. Application of feature selection method in building information extracting from high resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2018, (2):126-130. | 22 | BAO W, ZHAO J, HU G, et al. Identification of wheat leaf diseases and their severity based on elliptical-maximum margin criterion metric learning[J]. Sustainable Computing: Informatics and Systems, 2021, 30: ID 100526. | 23 | QIN F, LIU D, SUN B, et al. Identification of alfalfa leaf diseases using image recognition technology[J]. PLoS One, 2016, 11(12): ID e0168274. | 24 | ROBNIK-?IKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23-69. | 25 | JORDAN C F. Derivation of leaf‐area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666. | 26 | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[C]// In Third ERTS Symposium Volume 1: Technical Presentations. Washington, DC, USA: NASA, 1973: 309-317. | 27 | GAMON J A, PENUELAS J, FIELD C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41: 35-44. | 28 | HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309. | 29 | LIU H, HUETE A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33 (2): 457-465. | 30 | BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2000, 76(2): 156-172. | 31 | RICHARDSON A J, WIEGAND C L. Distinguishing vegetation from soil background information[J]. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1541-1552. | 32 | PENUELAS J, BARET F, FILELLA I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance[J]. Photosynthetica, 1995, 31(2): 221-230. | 33 | DU C, REN H, QIN Q, et al. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data[J]. Remote Sensing, 2015, 7(1): 647-665. | 34 | REN H, DU C, LIU R, et al. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(5): 1723-1738. | 35 | GAO F, MASEK J, SCHWALLER M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(8): 2207-2218. | 36 | OLATOMIWA L, MEKHILEF S, SHAMSHIRBAND S, et al. A support vector machine-firefly algorithm-based model for global solar radiation prediction[J]. Solar Energy, 2015, 115: 632-644. | 37 | HUANG L, LIU W, HUANG W, et al. Remote sensing monitoring of winter wheat powdery mildew based on wavelet analysis and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 188-195. | 38 | MA H, HUANG W, JING Y. Wheat powdery mildew forecasting in filling stage based on remote sensing and meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 165-172. | 39 | XU H. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics-Chinese Edition, 2015, 58(3): 741-747. | 40 | SHARMA A K, SHARMA R K, BABU K S, et al. Effect of planting options and irrigation schedules on development of powdery mildew and yield of wheat in the North Western plains of India[J]. Crop Protection, 2004, 23(3): 249-253. |
|