1 |
WANG L, CHEN S S, LI D, et al. Estimation of paddy rice nitrogen content and accumulation both at leaf and plant levels from UAV hyperspectral imagery[J]. Remote sensing, 2021, 13(15): ID 2956.
|
2 |
冯海宽, 陶惠林, 赵钰, 等. 利用无人机高光谱估算冬小麦叶绿素含量[J]. 光谱学与光谱分析, 2022, 42(11): 3575-3580.
|
|
FENG H K, TAO H L, ZHAO Y, et al. Estimation of chlorophyll content in winter wheat based on UAV hyperspectral[J]. Spectroscopy and spectral analysis, 2022, 42(11): 3575-3580.
|
3 |
QIAO L, TANG W J, GAO D H, et al. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages[J]. Computers and electronics in agriculture, 2022, 196: ID 106775.
|
4 |
田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11): 285-293.
|
|
TIAN M L, BAN S T, CHANG Q R, et al. Estimation of SPAD value of cotton leaf using hyperspectral images from UAV-based imaging spectroradiometer[J]. Transactions of the Chinese society for agricultural machinery, 2016, 47(11): 285-293.
|
5 |
尹航, 李斐, 杨海波, 等. 基于无人机高光谱影像的马铃薯叶绿素含量估测[J]. 植物营养与肥料学报, 2021, 27(12): 2184-2195.
|
|
YIN H, LI F, YANG H B, et al. Estimation of canopy chlorophyll in potato based on UAV hyperspectral images[J]. Journal of plant nutrition and fertilizers, 2021, 27(12): 2184-2195.
|
6 |
JIA F F, LIU G S, LIU D S, et al. Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance[J]. Field crops research, 2013, 150: 108-114.
|
7 |
陈晓凯, 李粉玲, 王玉娜, 等. 无人机高光谱遥感估算冬小麦叶面积指数[J]. 农业工程学报, 2020, 36(22): 40-49.
|
|
CHEN X K, LI F L, WANG Y N, et al. Estimation of winter wheat leaf area index based on UAV hyperspectral remote sensing[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 40-49.
|
8 |
王玉娜, 李粉玲, 王伟东, 等. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报, 2020, 36(22): 31-39.
|
|
WANG Y N, LI F L, WANG W D, et al. Monitoring of winter wheat nitrogen nutrition based on UAV hyperspectral images[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 31-39.
|
9 |
YANG H B, LI F, WANG W, et al. Estimating above-ground biomass of potato using random forest and optimized hyperspectral indices[J]. Remote sensing, 2021, 13(12): ID 2339.
|
10 |
萧浪涛, 王三根. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2005.
|
|
XIAO L T, WANG S G. Experimental technology of plant physiology[M]. Beijing: China Agriculture Press, 2005.
|
11 |
LIU H Y, ZHU H C, WANG P. Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data[J]. International journal of remote sensing, 2017, 38(8-10): 2117-2134.
|
12 |
付波霖, 邓良超, 张丽, 等. 联合星载高光谱影像和堆栈集成学习回归算法的红树林冠层叶绿素含量遥感反演[J]. 遥感学报, 2022, 26(6): 1182-1205.
|
|
FU B L, DENG L C, ZHANG L, et al. Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm[J]. National remote sensing bulletin, 2022, 26(6): 1182-1205.
|
13 |
ZHANG Y, XIA C Z, ZHANG X Y, et al. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images[J]. Ecological indicators, 2021, 129: ID 107985.
|
14 |
METTERNICHT G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International journal of remote sensing, 2003, 24(14): 2855-2877.
|
15 |
GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. spectral features and relation to chlorophyll estimation[J]. Journal of plant physiology, 1994, 143(3): 286-292.
|
16 |
MISTELE B, SCHMIDHALTER U. Tractor-based quadrilateral spectral reflectance measurements to detect biomass and total aerial nitrogen in winter wheat[J]. Agronomy journal, 2010, 102(2): 499-506.
|
17 |
RANJAN R, CHOPRA U K, SAHOO R N, et al. Assessment of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices[J]. International journal of remote sensing, 2012, 33(20): 6342-6360.
|
18 |
GITELSON A A, GRITZ Y, MERZLYAK M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of plant physiology, 2003, 160(3): 271-282.
|
19 |
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote sensing of environment, 1996, 55(2): 95-107.
|
20 |
BARNES E, CLARKE T, RICHARDS S E, et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data[C]// Proceedings of the 5th International Conference on Precision Agriculture. Madison, USA: American Society of Agronomy, 2000.
|
21 |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote sensing of environment, 2002, 81(2/3): 337-354.
|
22 |
VOGELMANN J E, ROCK B N, MOSS D M. Red edge spectral measurements from sugar maple leaves[J]. International journal of remote sensing, 1993, 14(8): 1563-1575.
|
23 |
CLEVERS JAN G P W. Imaging spectrometry in agriculture - plant vitality and yield indicators[M]// Eurocourses: remote sensing. Dordrecht: Springer Netherlands, 2007: 193-219.
|
24 |
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote sensing of environment, 1996, 58(3): 289-298.
|
25 |
DATT B. A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves[J]. Journal of plant physiology, 1999, 154(1): 30-36.
|
26 |
HABOUDANE D, MILLER J R, TREMBLAY N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote sensing of environment, 2002, 81(2/3): 416-426.
|
27 |
GITELSON A A, MERZLYAK M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in space research, 1998, 22(5): 689-692.
|
28 |
DASH J, CURRAN P J. The MERIS terrestrial chlorophyll index[J]. International journal of remote sensing, 2004, 25(23): 5403-5413.
|
29 |
陈倩, 常庆瑞, 郭松, 等. 基于红边特性和连续小波变换的冬小麦叶绿素含量估算[J]. 麦类作物学报, 2022, 42(7): 883-891.
|
|
CHEN Q, CHANG Q R, GUO S, et al. Estimation of chlorophyll content in winter wheat based on red edge characteristics and continuous wavelet transform[J]. Journal of triticeae crops, 2022, 42(7): 883-891.
|
30 |
LI C C, CHEN P, MA C Y, et al. Estimation of potato chlorophyll content using composite hyperspectral index parameters collected by an unmanned aerial vehicle[J]. International journal of remote sensing, 2020, 41(21): 8176-8197.
|
31 |
TAO H L, FENG H K, XU L J, et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors, 2020, 20(5): ID 1296.
|
32 |
班松涛, 田明璐, 常庆瑞, 等. 基于无人机高光谱影像的水稻叶片磷素含量估算[J]. 农业机械学报, 2021, 52(8): 163-171.
|
|
BAN S T, TIAN M L, CHANG Q R, et al. Estimation of rice leaf phosphorus content using UAV-based hyperspectral images[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(8): 163-171.
|
33 |
CHEN X K, LI F L, SHI B T, et al. Estimation of winter wheat canopy chlorophyll content based on canopy spectral transformation and machine learning method[J]. Agronomy, 2023, 13(3): ID 783.
|
34 |
PATEL M K, RYU D, WESTERN A W, et al. Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop[J]. Computers and electronics in agriculture, 2021, 182: ID 106000.
|