【目的/意义】 随着农业智能化转型加速推进,具身智能作为融合环境感知、信息认知、自主决策与采取行动于一体的智能系统,正为农业机器人赋予更强的自主感知与复杂环境适应能力,成为推动农业智能机器人发展的重要方向。本文系统地梳理了具身智能在农业机器人领域的技术体系与应用实践,揭示其在提高环境适应性、决策自主性和作业灵活性方面的重要价值,为推动农业机器人向更高水平发展提供理论与实践参考。 【进展】 本文首先归纳了具身智能农业机器人的关键支撑技术,包括多模态融合感知、智能自主决策、自主行动控制与反馈自主学习。随后分析了具身智能在农业中的典型应用场景,构建了以“具身感知-具身认知-具身执行-具身进化”组成的核心框架,并结合农业场景对其在各个方面的实现路径进行了分类探讨。最后深入剖析了当前面临的技术瓶颈与落地挑战,包括系统集成约束多、数据虚实差距大、场景泛化能力弱等问题。 【结论/展望】 从高质量数据集与仿真平台构建、领域大模型融合应用、分层协同架构设计等方面对具身智能农业机器人的未来发展趋势进行了展望,为具身智能农业机器人的研究者与工程实践者提供参考。
【目的/意义】 农产品供应链智能化转型是破解传统环节信息断层、高物流成本与质量追溯难题的关键路径,对提升效率、保障质量安全及农业现代化意义重大。本文系统解析其内涵,梳理各环节技术进展并提出发展方向。 【进展】 详细梳理了农产品智慧供应链在生产、加工、仓储、运输、配送、销售等各环节的关键技术研究进展。生产环节集成物联网、人工智能(Artificial Intelligence, AI)与区块链技术,实现精准决策与病虫害防控;加工环节依托智能分拣、新型清洗减菌技术提升品质;仓储通过物联网监测与AI优化库存管理提高效率;运输聚焦冷链技术创新与智能调度系统优化配送时效;销售端运用大数据与AI技术驱动精准营销与库存管理,全链可溯源确保数据透明。 【结论/展望】 未来需加速无人化运作与信息共享平台建设,通过技术赋能提升供应链韧性,并推进精细化管理以增强国际竞争力;产业模式上应深化低碳转型,推广清洁能源、绿色包装及智能物流,对接“双碳”目标。当前技术应用仍面临数据治理、标准化不足等挑战,需政策引导建立技术规范、加大研发投入,并强化跨领域协同创新,推动智能化升级,为农业可持续发展和全球粮食安全提供支撑。
【目的/意义】 本文针对农业生产数据存在获取标准不一、数据采集不全、治理机制不明的问题,对现有的农业生产大数据治理模式进行了探索,通过大数据治理关键技术、适配工具的集成与场景化创新应用,阐明面向农业生产大数据治理的数据要素价值发挥的技术路径,为实现数据驱动农业高质量生产提供参考。 【进展】 从农业生产大数据治理的视角,探索了数据获取与处理、数据存储与交换、数据管理、数据分析、大模型和数据安全保障6大环节17类大数据治理技术及工具,深度研究了大数据治理技术在农业生产中的应用方式,以上技术通过数据匹配、算力匹配、网络适配、模型匹配、场景匹配、业务组配等工具和中间件在场景中得到较好应用。剖析了农业生产产前、产中、产后全链条数据治理,以及面向不同类型农业园区、科研院所和高校、生产主体与农户服务案例。介绍了在国家级产业园区、省级农业科技园区和部分单品主体的治理经验,并调研了国内外农业生产大数据治理技术、做法和工具。 【结论/展望】 对农业生产大数据治理未来发展方向提出了见解,包括推动农业生产大数据治理标准的制定与落地,构建农业生产大数据治理通用资源池,扩展农业生产大数据治理多元化应用场景,适应大模型及海量数据驱动下的农业生产大数据治理新范式和强化农业生产大数据安全与隐私保护。
【目的/意义】 AI4S(AI for Science)作为人工智能(Artificial Intelligence, AI)与科学研究深度融合的新兴形态,引发了科研范式的深刻变革,通过AI技术加速科学发现,推动科学研究从传统的经验、直觉驱动向数据与AI共同驱动转变,已在众多科学领域实现了创新突破,也为农业科研转型带来新的机遇。 【进展】 本文梳理并分析了AI4S发展现状及其对农业科研产生的影响,研究发现近年来AI4S已取得显著进展,国内外积极布局相关前沿领域并出台系列政策以抢占新一轮科技战略制高点,且在多个学科领域得到了广泛应用。在农业科研领域,AI在加速多学科交叉融合、促进科研效率提升、助力复杂问题突破、驱动科研范式变革和升级科研基础设施五个方面发挥了重要作用。 【结论/展望】 面向农业科研新需求、核心领域与研究过程,提出了农业智能科研(AI for Agricultural Science, AI4AS)的概念及体系关键要素,涵盖大科学基础设施、大数据资源、大模型算法和大协同平台等部分。最后,针对数据资源、模型能力、科研生态,以及人才培养等挑战,从顶层设计规划、关键技术体系、协同创新体系、学科体系建设、复合人才引育等角度,提出打造面向AI4S发展的农业科研新体系的实现路径与具体建议。
【目的/意义】 母牛发情监测与鉴定是牧场养殖繁育管理的重要内容,直接决定了牛群发情率等繁殖力指标统计的客观性与可靠性,对持续改进饲养管理方法、提升牛场管理水平、提高牛群数量和质量等工作至关重要。文章旨在为肉牛/奶牛养殖业的科学管理和现代化生产新技术研究提供参考,亦为中国精准畜牧智慧养殖关键技术研发提供理论方法借鉴。 【进展】 在阐述母牛正常发情与异常发情典型特征的基础上,以发情期生理体征和行为特征关键参数监测与诊断为主线,从基于单因子信息处理和多因子信息融合的技术方法视角,系统性分类总结了物联网、大数据和人工智能等新一代信息技术驱动下的母牛发情监测与鉴定技术的研究进展、发展脉络和方法路径。 【结论/展望】 从系统实用性、稳定性和环境适应性,以及设备成本效益、操作简便性等综合多方面因素的角度,探讨了数字畜牧业高质量发展背景下进一步深化研究母牛发情精准感知与智能鉴定技术亟待解决的若干关键问题,包括提高弱发情条件下监测精准性、突破复杂背景噪声中的音频提取与声纹构建技术难题、提升计算机视觉监测技术的适应能力,以及构建多模态信息融合的综合监测鉴定模型等问题,并针对性论述了上述系列问题对当前技术研究带来的诸多挑战。
【目的/意义】 植物活性小分子在调节植物生长及抵御环境胁迫等方面起到关键作用,对其进行精准检测对于实现农业的精准管理、推动智慧农业发展具有重要意义。多种检测方法已被用于植物活性小分子检测。其中,电化学传感器以其灵敏、便携及低成本等特点而备受关注。 【进展】 通过检索相关文献,本文深入分析了电化学传感器在植物活性小分子检测领域的研究现状,详细分析了每种传感器的感知原理、信号放大策略及应用潜力等,探讨了传感器从离体检测到活体、原位检测的发展趋势,纳米材料在感知过程中的重要作用,与柔性电子、人工智能技术的结合情况等。 【结论/展望】 总结了目前电化学传感器在植物活性小分子检测领域所面临的技术挑战,并分析了下一步的发展方向,包括传感性能的提升、电解质材料的优化,以及传感器与微电子、人工智能技术的融合等。本研究可为植物小分子电化学传感器的技术研发和应用提供参考。
【目的/意义】 水稻作为全球主要粮食作物,其生育期精准识别对优化品种选育与生产管理至关重要。传统人工观测效率低、空间覆盖有限,而气象-土壤耦合模型存在参数敏感性与生态适应性瓶颈,难以满足现代农业高效化、精准化需求。遥感技术凭借高时空分辨率、多源协同和低人工干预优势,为水稻全生育期动态监测提供了革新手段。 【进展】 近年来,多源遥感数据(卫星、无人机、近地传感)通过光谱-空间-时序三维校正,结合阈值法、机器学习及深度学习模型显著提升了生育期识别精度。光谱指数与农艺参数的协同反演,以及光学-合成孔径雷达数据融合有效增强了生理可解释性。深度学习框架通过冠层纹理、器官形态特征解析,实现了抽穗期至成熟期的高精度识别,而时序模型则捕捉了生育期连续演进的动态规律。 【结论/展望】 当前技术仍面临多源数据时空异质性、光谱饱和效应、模型泛化能力不足等挑战。未来需构建多源数据同化体系破解时空矛盾,发展跨尺度生理-光谱响应模型揭示生育期驱动机制,并创新机理-数据混合驱动算法提升跨域适应性,最终建立农业大数据支撑的全周期监测体系,为水稻智能管理提供理论及实践支撑。
【目的/意义】 农田草害制约着作物种植生产的质量和产量,激光除草技术作为一种生态环保防控田间杂草革新方法,具有环保、高效、灵活和自动化特点,可以很好地减少人力需求,降低化学药剂用量和污染,极大地缓解农田劳动力短缺、作物减产压力,在生态环境保护方面具有重要意义。 【进展】 首先介绍了激光除草技术的研究背景,概述了激光除草技术体系和作业系统,围绕激光除草机器人关键技术展开论述和讨论,涵盖杂草自动识别定位技术、机器人导航与路径规划、除草执行机构控制技术,以及整机研制等进展。最后结合国内外激光除草机器人的发展现状,综述了激光除草机器人发展目前存在的问题及未来趋势。 【结论/展望】 激光除草属于精密的智能化除草方式,是目前国内外学者研究和开发智慧农业关键技术和装备的研究热点,并取得了一系列成果,促进了除草机器人田间实际应用和推广示范。结合不同地区田间草害,未来还应开展大量的激光除草室内外杂草实验研究,以进一步验证激光田间除草的技术可行性并获取准确的激光能耗、效率和效益等数据,为激光除草的装备技术研发与应用提供支持。
目的/意义 发展新质生产力对推动畜牧业高质量发展具有重要意义。本文旨在对人工智能驱动畜牧新质生产力高质量发展开展系统研究。厘清人工智能推动畜牧新质生产力高质量发展的机理和方向,深入分析畜牧新质生产力的内涵、特征、制约因素,以及推进路径。[进展]畜牧新质生产力是以生物技术、信息技术和绿色技术等前沿技术创新为主导,以数智化、绿色化、生态化为产业升级方向,基本内涵表现为更高素质的劳动者、更先进的劳动资料和更广范围的劳动对象。与传统生产力相比,畜牧新质生产力是以科技创新为导向、以新发展理念为引领、以全要素生产率提升为核心的先进生产力,具有生产效率高、产业效益好、可持续发展能力强的显著特征。中国畜牧新质生产力已具备较好发展基础,但也面临畜禽育种技术创新不足、核心竞争力不强,畜牧养殖机械化率不高、智能装备自主研发能力较弱,“机器换人”需求迫切、畜牧人才量质存在短板,养殖规模化程度不高、智能化管理水平有限等制约因素。人工智能在畜牧业中可以广泛应用在环境控制、精准饲喂、健康监测与疫病防控、供应链优化等领域。人工智能经由以数字技术为代表的畜牧业技术革命性突破,以数据要素为纽带的畜牧业生产力要素创新性配置,与数字经济相适应的畜牧业产业深度转型,催生畜牧新质生产力,赋能畜牧业高质量发展。[结论/ 【目的/意义】 发展新质生产力对推动畜牧业高质量发展具有重要意义。本文旨在对人工智能驱动畜牧新质生产力高质量发展开展系统研究。厘清人工智能推动畜牧新质生产力高质量发展的机理和方向,深入分析畜牧新质生产力的内涵、特征、制约因素,以及推进路径。 【进展】 畜牧新质生产力是以生物技术、信息技术和绿色技术等前沿技术创新为主导,以数智化、绿色化、生态化为产业升级方向,基本内涵表现为更高素质的劳动者、更先进的劳动资料和更广范围的劳动对象。与传统生产力相比,畜牧新质生产力是以科技创新为导向、以新发展理念为引领、以全要素生产率提升为核心的先进生产力,具有生产效率高、产业效益好、可持续发展能力强的显著特征。中国畜牧新质生产力已具备较好发展基础,但也面临畜禽育种技术创新不足、核心竞争力不强,畜牧养殖机械化率不高、智能装备自主研发能力较弱,“机器换人”需求迫切、畜牧人才量质存在短板,养殖规模化程度不高、智能化管理水平有限等制约因素。人工智能在畜牧业中可以广泛应用在环境控制、精准饲喂、健康监测与疫病防控、供应链优化等领域。人工智能经由以数字技术为代表的畜牧业技术革命性突破,以数据要素为纽带的畜牧业生产力要素创新性配置,与数字经济相适应的畜牧业产业深度转型,催生畜牧新质生产力,赋能畜牧业高质量发展。 【结论/展望】 提出了提升畜牧科技创新能力、建立畜牧业全链条信息化监管模式、加快畜牧绿色科技推广应用、提高畜牧业全产业链管理水平,以及完善重要畜禽品种商业化育种机制的畜牧新质生产力发展推进路径。