欢迎您访问《智慧农业(中英文)》官方网站! English

Smart Agriculture

• •    

水稻生育期遥感监测的研究进展、瓶颈问题与技术优化路径

李瑞杰1,2(), 王爱冬2(), 吴华星2, 李子秋2, 冯向前1,2, 洪卫源2, 汤学军3, 覃金华1,2, 王丹英2, 褚光2, 张运波1(), 陈松2()   

  1. 1. 长江大学 农学院,湖北 荆州 434025,中国
    2. 中国水稻研究所 水稻生物育种全国重点实验室,浙江 杭州 311400,中国
    3. 临海市农业技术推广中心,浙江临海 317000,中国
  • 收稿日期:2024-12-23 出版日期:2025-06-04
  • 基金项目:
    国家重点研发计划项目(2022YFD2300702-2); 水稻产业体系(CARS-01); 中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202001)
  • 作者简介:

    李瑞杰,研究方向为多维度水稻表型特征识别、水稻生育期近地遥感分类研究。E-mail:

    LI Ruijie, E-mail: ;

    王爱冬,研究方向为多源数据融合精准估算水稻表型特征。E-mail:

    李瑞杰与王爱东并列第一作者

  • 通信作者:
    陈 松,博士,研究员,研究方向为稻田绿色低碳、水稻高产优质、栽培智能高效、水稻表型组等。E-mail:
    张运波,博士,教授,研究方向为水稻优质高产、水稻生理机制、水稻高产高效栽培。E-mail:

Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths

LI Ruijie1,2(), WANG Aidong2(), WU Huaxing2, LI Ziqiu2, FENG Xiangqian1,2, HONG Weiyuan2, TANG Xuejun3, QIN Jinhua1,2, WANG Danying2, CHU Guang2, ZHANG Yunbo1(), CHEN Song2()   

  1. 1. College of Agronomy, Yangtze University, Jingzhou 434025, China
    2. The NationalKey Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 311400, China
    3. Linhai Agricultural Technology Extension Center, Linhai 317000, China
  • Received:2024-12-23 Online:2025-06-04
  • Foundation items:National Key Research and Development Program of China(2022YFD2300702-2); Rice Industry System(CARS-01); Major Scientific Research Task of the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ZDRW202001)
  • About author:

    WANG Aidong, E-mail:

  • Corresponding author:
    CHEN Song, E-mail: ;
    ZHANG Yunbo, E-mail:

摘要:

[目的/意义] 水稻作为全球主要粮食作物,其生育期精准识别对优化品种选育与生产管理至关重要。传统人工观测效率低、空间覆盖有限,而气象-土壤耦合模型存在参数敏感性与生态适应性瓶颈,难以满足现代农业高效化、精准化需求。遥感技术凭借高时空分辨率、多源协同和低人工干预优势,为水稻全生育期动态监测提供了革新手段。 [进展] 近年来,多源遥感数据(卫星、无人机、近地传感)通过光谱-空间-时序三维矫正,结合阈值法、机器学习及深度学习模型显著提升了生育期识别精度。光谱指数与农艺参数的协同反演,以及光学-合成孔径雷达数据融合有效增强了生理可解释性。深度学习框架通过冠层纹理、器官形态特征解析,实现了抽穗期至成熟期的高精度识别,而时序模型则捕捉了生育期连续演进的动态规律。 [结论/展望] 当前技术仍面临多源数据时空异质性、光谱饱和效应、模型泛化能力不足等挑战。未来需构建多源数据同化体系破解时空矛盾,发展跨尺度生理-光谱响应模型揭示生育期驱动机制,并创新机理-数据混合驱动算法提升跨域适应性,最终建立农业大数据支撑的全周期监测体系,为水稻智能管理提供理论及实践支撑。

关键词: 水稻, 生育期识别, 遥感, 模型, 深度学习, 多源融合

Abstract:

[Significance] ​The efficient and precise identification of rice growth stages through remote sensing technology holds critical significance for varietal breeding optimization and production management enhancement. Remote sensing, characterized by high spatial-temporal resolution and automated monitoring capabilities, provides transformative solutions for large-scale dynamic phenology monitoring, offering essential technical support to address climate change impacts and food security challenges in complex agroecosystems where precise monitoring of growth stage transitions enables yield prediction and stress-resilient cultivation management.​ [Progress] In recent years, the technical system for monitoring rice growth stages has achieved systematic breakthroughs in the perception layer, decision-making layer, and execution layer, forming a technological ecosystem covering the entire chain of "data acquisition-feature analysis-intelligent decision-making-precise operation". At the perception layer, a "space-air-ground" three-dimensional monitoring network has been constructed: high-altitude satellites (Sentinel-2, Landsat) realize regional-scale phenological dynamic tracking through wide-spectrum multi-temporal observations; low-altitude unmanned aerial vehicle (UAVs) equipped with hyperspectral and light detection and ranging (LiDAR) sensors analyze the heterogeneity of canopy three-dimensional structure; near-ground sensor networks real-timely capture leaf-scale photosynthetic efficiency and nitrogen metabolism parameters. Radiometric calibration and temporal interpolation algorithms eliminate the spatio-temporal heterogeneity of multi-source data, forming continuous and stable monitoring capabilities. Innovations in technical methods show three integration trends: first, multimodal data collaboration mechanisms break through the physical characteristic barriers between optical and radar data. Second, deep integration of mechanistic models and data-driven approaches embeds the PROpriétés SPECTrales-Scattering by arbitrary inclined leaves (PROSAIL) radiative transfer model into the long short-term memory (LSTM) network architecture. Third, cross-scale feature analysis technology breaks through by constructing organ-population association models based on dynamic attention mechanisms, realizing multi-granularity mapping between panicle texture features and canopy leaf area index (LAI) fluctuations. The current technical system has completed three-dimensional leaps: From discrete manual observations to full-cycle continuous perception, with monitoring frequency upgraded from weekly to hourly; from empirical threshold-based judgment to mechanism-data hybrid-driven, the cross-regional generalization ability of the model can be significantly improved; from independent link operations to full-chain collaboration of "perception-decision-execution", constructing a digital management closed-loop covering rice sowing to harvest, providing core technical support for smart farm construction. [Conclusions and Prospects] Current technologies face three-tiered challenges: Data heterogeneity, feature limitations and algorithmic constraints. Future research should focus on three aspects: 1) Multi-source data assimilation systems to reconcile spatiotemporal heterogeneity through UAV-assisted satellite calibration and GAN-based cloud-contaminated data reconstruction; 2) Cross-scale physiological-spectral models integrating 3D canopy architecture with adaptive soil-adjusted indices to overcome spectral saturation; 3) Mechanism-data hybrid paradigms embedding thermal-time models into LSTM networks for environmental adaptation, developing lightweight CNNs with multi-scale attention for occlusion-resistant panicle detection, and implementing transfer learning for cross-regional model generalization. The convergence of multi-source remote sensing, intelligent algorithms, and physiological mechanisms will establish a full-cycle dynamic monitoring system based on agricultural big data.

Key words: rice, growth period, remote sensing, models, deep learning, multi-source fusion

中图分类号: