欢迎您访问《智慧农业(中英文)》官方网站! English

信息感知与获取 栏目所有文章列表

    (按年度、期号倒序)
        一年内发表的文章 |  两年内 |  三年内 |  全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 复杂大田场景下基于改进YOLOv8的小麦幼苗期叶片数快速检测方法
    侯依廷, 饶元, 宋贺, 聂振君, 王坦, 何豪旭
    智慧农业(中英文)    2024, 6 (4): 128-137.   DOI: 10.12133/j.smartag.SA202403019
    摘要513)   HTML97)    PDF(pc) (2913KB)(844)    收藏

    [目的/意义] 小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构的重要指标之一。目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法的效率与精度难以满足实际应用需求。为提高小麦叶片数检测的准确性,设计了一种复杂大田环境下高效识别小麦叶尖的算法。 [方法] 本研究以手机和田间摄像头获取的可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期的小麦叶片图像数据集。以YOLOv8为基础网络,融合坐标注意力机制降低背景环境的干扰,提高模型对小麦叶尖轮廓信息的提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖的识别效果,降低漏检率。设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数。[结果与讨论]本研究提出的方法对小麦叶尖的识别精确率和mAP0.5分别达到91.6%和85.1%,具有良好的检测效果。在复杂大田环境下该方法具有更好的适应能力,能够在不同光照条件下实现自适应检测,模型鲁棒性强。小麦幼苗期叶片检测漏检率低,说明该方法能够满足复杂大田场景下小麦叶尖识别的需求,提高了小麦叶片数检测的准确性。 [结论] 本研究可为复杂大田场景下小麦叶片数检测的研究提供参考,为小麦长势高质量评估提供技术支撑。

    图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
    2. 基于改进SlowFast模型的设施黄瓜农事行为识别方法
    何峰, 吴华瑞, 史扬明, 朱华吉
    智慧农业(中英文)    2024, 6 (3): 118-127.   DOI: 10.12133/j.smartag.SA202402001
    摘要348)   HTML104)    PDF(pc) (1737KB)(450)    收藏

    [目的/意义] 农事行为活动识别对设施蔬菜生产精准化调控有着重要意义,在一定程度上可以通过查看农事操作的时间、操作过程是否合理来减少因农事行为不当导致产量下降。为了解决农事行为识别方法中由于黄瓜叶片和设施遮挡导致识别准确率不高的问题,提出一种名为SlowFast-SMC-ECA(SlowFast-Spatio-Temporal Excitation、Channel Excitation、Motion Excitation-Efficient Channel Attention)的农事活动行为识别算法。 [方法] 该算法主要基于SlowFast模型,通过改进Fast Pathway和Slow Pathway中的网络结构来提高对于农事活动中手部动作特征和关键特征的提取能力。在Fast Pathway中,引入多路径激励残差网络的概念,通过在信道之间插入卷积操作来增强它们在时域上的相互关联性,从而更好地捕捉快速运动信息的细微时间变化。在Slow Pathway中,将传统的Residual Block替换为ECA-Res结构,以提高对通道信息的捕获能力。这两项改进有效地加强了通道之间的联系,提升了特征之间的语义信息传递,进而显著提升了农事行为识别的准确率。此外,为了解决数据集中类别不均衡的问题,设计了平衡损失函数(Smoothing Loss),通过引入正则化系数,平衡损失函数可以有效地处理数据集中的类别不均衡情况,提高模型在各个类别上的表现。 [结果和讨论] 改进的SlowFast-SMC-ECA模型在农事行为识别中表现出良好的性能,各类行为的平均识别精度达到80.47%,相较于原始的SlowFast模型有约3.5%的提升。 [结论] 本研究在农事行为识别中展现出良好的性能。这对农业生产的智能化管理和决策具有重要意义。

    图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0
    3. 基于改进UperNet的结球甘蓝叶球识别方法
    朱轶萍, 吴华瑞, 郭旺, 吴小燕
    智慧农业(中英文)    2024, 6 (3): 128-137.   DOI: 10.12133/j.smartag.SA202401020
    摘要392)   HTML112)    PDF(pc) (1568KB)(656)    收藏

    [目的/意义] 叶球是结球甘蓝的重要部分,其生长发育对田间管理至关重要。针对叶球分割识别存在大田背景复杂、光照不均匀和叶片纹理相似等问题,提出一种语义分割算法UperNet-ESA,旨在能快速、准确地分割田间场景中结球甘蓝的外叶和叶球,以实现田间结球甘蓝的智能化管理。 [方法] 首先,采用统一感知解析网络(Unified Perceptual Parsing Network, UperNet)作为高效语义分割框架,将主干网络改为先进的ConvNeXt,使得模型在提升分割精度的同时也能具有较低的模型复杂度;其次,利用高效通道注意力机制(Efficient Channel Attention, ECA)融入特征提取网络的各阶段,进一步捕捉图像的细节信息;最后,通过将特征选择模块(Feature Selection Model, FSM)和特征对齐模块(Feature Alignment Model, FAM)集成到特征金字塔框架中,得到更为精确的目标边界预测结果。 [结果和讨论] 在自制结球甘蓝图像数据集上进行实验,与目前主流的UNet、PSPNet和DeeplabV3+语义分割模型相比,改进UperNet方法的平均交并比为92.45%,平均像素准确率为94.32%,推理速度为16.6 f/s,能够达到最佳精度-速度平衡效果。 [结论] 研究成果可为结球甘蓝生长智能化监测提供理论参考,对甘蓝产业发展具有重要的应用前景。

    图表 | 参考文献 | 相关文章 | 多维度评价 | 评论0