1 |
岳智臣, 俞国红, 薛向磊, 等. 杭州秋季露地甘蓝轻简化增效栽培技术简析[J]. 浙江农业科学, 2023, 64(5): 1103-1106.
|
|
YUE Z C, YU G H, XUE X L, et al. Analysis of light and simple and efficient cultivation techniques of autumn cabbage in Hangzhou[J]. Journal of Zhejiang agricultural sciences, 2023, 64(5): 1103-1106.
|
2 |
陈皓颖. 人工智能在农业领域中的应用[J]. 灌溉排水学报, 2023, 42(7): 146.
|
|
CHEN H Y. Application of artificial intelligence in agricultural field[J]. Journal of irrigation and drainage, 2023, 42(7): 146.
|
3 |
刘海桥, 刘萌, 龚子超, 等. 基于深度学习的图像匹配方法综述[J/OL]. 航空学报, (2024-01-16).
|
|
LIU H Q, LIU M, GONG Z C, et al. A review of image matching methods based on deep learning[J/OL]. Acta aeronautica et astronautica sinica, (2024-01-16).
|
4 |
赵永强, 金芝, 张峰, 等. 深度学习图像描述方法分析与展望[J]. 中国图象图形学报, 2023, 28(9): 2788-2816.
|
|
ZHAO Y Q, JIN Z, ZHANG F, et al. Deep-learning-based image captioning: Analysis and prospects[J]. Journal of image and graphics, 2023, 28(9): 2788-2816.
|
5 |
MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmentation using deep learning: A survey[J]. IEEE trans pattern anal mach intell, 2022, 44(7): 3523-3542.
|
6 |
GAN P X, LUO X Y, LIU B, et al. Research on semantic segmentation method of urban streetscape image based on deep learning[C]// Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2021). Burlingame, California, USA: SPIE, 2022.
|
7 |
翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述[J]. 中国科学(生命科学), 2019, 49(6): 698-716.
|
|
WENG Y, ZENG R, WU C M, et al. A survey on deep-learning-based plant phenotype research in agriculture[J]. Scientia sinica (vitae), 2019, 49(6): 698-716.
|
8 |
刘俊奇, 涂文轩, 祝恩. 图卷积神经网络综述[J]. 计算机工程与科学, 2023, 45(8): 1472-1481.
|
|
LIU J Q, TU W X, ZHU E. Survey on graph convolutional neural network[J]. Computer engineering & science, 2023, 45(8): 1472-1481.
|
9 |
郭庆梅, 于恒力, 王中训, 等. 基于卷积神经网络的图像分类模型综述[J]. 电子技术应用, 2023, 49(9): 31-38.
|
|
GUO Q M, YU H L, WANG Z X, et al. Review of image classification models based on convolutional neural networks[J]. Application of electronic technique, 2023, 49(9): 31-38.
|
10 |
张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57.
|
|
ZHANG X, YAO Q A, ZHAO J, et al. Image semantic segmentation based on fully convolutional neural network[J]. Computer engineering and applications, 2022, 58(8): 45-57.
|
11 |
ZHANG D Y, ZHANG W H, CHENG T, et al. Segmentation of wheat scab fungus spores based on CRF_ResUNet++[J]. Computers and electronics in agriculture, 2024, 216: ID 108547.
|
12 |
ZHENG C, CHEN P F, PANG J, et al. A mango picking vision algorithm on instance segmentation and key point detection from RGB images in an open orchard[J]. Biosystems engineering, 2021, 206(6): 32-54.
|
13 |
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割[J]. 农业工程学报, 2021, 37(9): 211-221.
|
|
WANG C, WU X H, ZHANG Y Q, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 211-221.
|
14 |
刘平, 刘立鹏, 王春颖, 等. 基于机器视觉的田间小麦开花期判定方法[J]. 农业机械学报, 2022, 53(3): 251-258.
|
|
LIU P, LIU L P, WANG C Y, et al. Determination method of field wheat flowering period baesd on machine vision[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(3): 251-258.
|
15 |
SONG Z Z, ZHOU Z X, WANG W Q, et al. Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting[J]. Computers and electronics in agriculture, 2021, 181: ID 105933.
|
16 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. arXiv: 2010.11929, 2020.
|
17 |
ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[EB/OL]. arXiv: 2012.15840, 2020.
|
18 |
REEDHA R, DERICQUEBOURG E, CANALS R, et al. Transformer neural network for weed and crop classification of high resolution UAV images[J]. Remote sensing, 2022, 14(3): ID 592.
|
19 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: Simple and efficient design for semantic segmentation with transformers[J]. arXiv: 2105.1520, 2021.
|
20 |
XIAO T T, LIU Y C, ZHOU B L, et al. Unified perceptual parsing for scene understanding[M]// Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 432-448.
|
21 |
LIU Z, MAO H, WU C Y, et al.A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, Louisiana, USA: IEEE, 2020: 11966-11976.
|
22 |
TAKAHASHI R, MATSUBARA T, UEHARA K. Data augmentation using random image cropping and patching for deep CNNs[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(9): 2917-2931.
|
23 |
DIAO Z H, GUO P L, ZHANG B H, et al. Maize crop row recognition algorithm based on improved UNet network[J]. Computers and electronics in agriculture, 2023, 210: ID 107940.
|
24 |
YANG C Z, GUO H J. A method of image semantic segmentation based on PSPNet[J]. Mathematical problems in engineering, 2022, 2022: ID 8958154.
|
25 |
马冬梅, 李鹏辉, 黄欣悦, 等. 改进DeepLabV3+的高效语义分割[J]. 计算机工程与科学, 2022, 44(4): 737-745.
|
|
MA D M, LI P H, HUANG X Y, et al. Efficient semantic segmentation based on improved DeepLabV3+[J]. Computer engineering & science, 2022, 44(4): 737-745.
|
26 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021: 10012-10022.
|